TECO

SG2 Smart PLC USER Manual

SG2 Programmable Logic Smart Relay

Contents

Contents I
Summary of changes V
Chapter 1: Getting Started 1
Examination before Installation 3
Environmental Precautions 3
SG2 Model Identification 3
Quick Start Setup 4
Install SG2 Client Software 4
Connect Power to SG2 smart relay 4
Connect Programming Cable 5
Establish Communication 5
Write simple program 6
Chapter 2: Installation 10
General Specifications 11
Product Specifications 14
Mounting 15
Wiring 17
K type Indicator Light 19
Chapter 3: Program Tools 20
PC Programming Software "SG2 Client" 21
Installing the Software 21
Connecting the Software 21
Start Screen 21
Ladder Logic Programming Environment 22
Menus, Icons and Status Bar 23
Programming 24
Simulation Mode 25
Establish Communication 25
Writing Program to smart relay 26
Online Monitoring/Editing 27
Operation menu 28
HMI/TEXT 29
Program Documentation 33
Analog Output Set 35
3-Row/5-Row 36
Data Register Set 37
View menu 39
FBD Programming Environment 40
Menu, Icons and Status Bar 40
Programming 41
Simulation Mode 42
Online Monitoring/Editing 42
Symbol and Parameters list 43
Memory Cartridge (sold separately) 45
LCD Display and Keypad 46
Keypad 46
Original Screen 47
LCD Display Main Menu 50
RTC Daylight saving setting 55
SG2 system error 59
Chapter 4: Parameter passing 60
SG2 inner data type 61
Passing parameter out of range 63
Chapter 5: Relay Ladder Logic Programming 65
Common Memory Types 66
Specialty Memory Types. 69
Output Instructions 70
Analog memory type 71
Timer Instruction 72
Counter Instructions 80
Real Time Clock (RTC) Instructions 90
Comparator Instructions 98
HMI Display Instructions 100
PWM Output Instruction (DC Transistor Output Models Only) 103
IO Link/Remote I/O Instruction (SG2-20Vxxx model only) 106
MU (Modbus) (SG2-20Vxxx model only) 109
SHIFT (shift output) 116
AQ (Analog Output) 117
AS (Add-Subtract) 119
MD (MUL-DIV) 120
PID (Proportion- Integral- Differential) 121
MX (Multiplexer) 125
AR (Analog-Ramp) 126
DR (Data register) 130
Chapter 6: Function Block Diagram Programming 132
FBD Instructions 133
FBD system memory space 134
Analog 136
Analog Input 136
Analog Output 137
Coil Block Instruction 138
HMI 139
PWM function block (only transistor output version) 140
IO Link function block 142
SHIFT function block 144
Logic Block Instructions 145
AND Logic Diagram 145
AND (EDGE) Logic Diagram 145
NAND Logic Diagram 146
NAND (EDGE) Logic Diagram 146
OR Logic Diagram 146
NOR Logic Diagram 147
XOR Logic Diagram 147
SR Logic Diagram 147
NOT Logic Diagram 147
Pulse Logic Diagram 148
BOOLEAN Logic Diagram 148
Function Block 149
Timer Function Block 150
Common Counter function block 158
High Speed Counter Function Block (DC Version Only) 164
RTC Comparator Function Block 166
Analog Comparator Function Block 171
AS (ADD-SUB) function block 174
MD (MUL-DIV) function block 175
PID (Proportion- Integral- Differential) function block 176
MX (Multiplexer) function block 177
AR (Analog-Ramp) function block 178
Example 181
DR (Data-Register) function block 182
MU (Modbus) function block 183
Chapter 7: Hardware Specification 189
Normal Specification 190
Product Specifications 191
Power Specifications 192
Normal model machine Specifications 192
12V DC model Specifications 193
24V AC model Specifications 193
Power circuitry diagram 194
Input Specifications 195
100~240V AC model 195
24 V AC model 195
24V DC, 12 I/O model 196
24V DC, 20 I/O model 197
12V DC, 12 I/O model 198
12V DC, 20 I/O model 199
Output Specifications 200
Output Port wiring notice 200
Light Load 200
Inductance Load 201
Life of relay 201
Size diagram of SG2 202
Chapter 8: 20 Points RS485 type Models Instruction 203
Communication function 204
Detail instruction 206
Remote IO function 206
IO Link Function 207
MU instruction (Modbus RTU master) 209
Modbus RTU slave function 211
SG2 Modbus protocol 211
Chapter 9: Expansion Module 213
Summarize 214
Digital IO Module 218
Analog Module 222
Analog Input Module 4AI 222
Temperature Input Module 4PT 223
Analog Output Module 2AO 224
Communication Module 226
MBUS Module 226
DNET Module 229
PBUS Module 232
EN01 (TCP/IP) Module 235
GSM Module 241
Appendix: Keypad Programming 246
Appendix A: Keypad programming in Ladder mode 247
Appendix B: Keypad programming in Ladder FUNCTION BLOCK 251

Summary of changes

This user manual is modified by firmware V3.0 and SG2 Client programming software V3.0. SG2 V3.0 adds some new functions with firmware version V3.0 to strong SG2 function. The upgrade content is shown as the 2 tables below simply. More information about idiographic function to see function instruction.

Edit and Display

	SG2 V3.0	SG2 V2.x
Ladder	300 lines	200 lines
FBD	260 blocks	99blocks
LCD	4 lines * 16 characters	4 lines * 12 characters

Contact and function block

	input	output	SG2 V3.0	SG2 V2.x
Auxiliary relay M	M	M	63(M01~M3F)	15(M1~MF)
Auxiliary relay N	N	N	63(N01~N3F)	Ladder: NO FBD: 15(N1~NF)
temperature input	AT		4(AT01~AT04)	NO
analog output		AQ	4(AQ01~AQ04)	NO
PWM		P	2(P01~P02, P01 adds PLSY mode)	1(P1: PWM)
HMI			31(H01~H1F)	15(H1~HF)
Timer	T	T	Ladder: 31(T01~T1F) FBD: 250(T01~TFA)	15(T1~TF)
Counter	C	C	Ladder: 31(C01~C1F) FBD: 250(C01~CFA)	15(C1~CF)
RTC	R	R	Ladder: 31(R01~R1F) FBD: 250(R01~RFA)	15(R1~RF)
Analog Comparator	G	G	Ladder: 31(G01~G1F) FBD: 250(G01~GFA)	15(G1~GF)
AS(Add-Sub)			Ladder: 31(AS01~AS1F) FBD: 250(AS01~ASFA)	NO
MD(Mul-Div)			Ladder: 31(MD01~MD1F) FBD: 250(MD01~MDFA)	NO
PID			Ladder: 15(PI01~PI0F) FBD: 30(PI01~PI1E)	NO
MX(Multiplexer)	NO	NO	Ladder: 15(MX01~MX0F) FBD: 250(MX01~MXFA)	NO
AR(Analog Ramp)			Ladder: 15(AR01~AR0F) FBD: 30(AR01~AR1E)	NO
DR(Data Register)			240(DR01~DRF0)	NO
MU(MODBUS)			Ladder: 15(MU01~MU0F) FBD: 250(MU01~MUFA)	NO
Block			Logic function: BOOLEAN	NO
	B	B	260(B001~B260)The capability of each block is alterable, and the total capability of block is 6000bytes	99(B01~B99)The capability of each block is fixed
PM05(3rd)			PM05(3rd) can be used with all version of SG2	PM05 can not be used with SG2 V3.x

Chapter 1: Getting Started

Examination before Installation 3
Environmental Precautions 3
SG2 Model Identification 3
Quick Start Setup4
Install SG2 Client Software 4
Connect Power to SG2 smart relay. 4
Connect Programming Cable5
Establish Communication 5
Write simple program 6

The SG2 tiny smart Relay is an electronic device. For safety reasons, please carefully read and follow the paragraphs with "WARNING" or "CAUTION" symbols. They are important safety precautions to be aware of while transporting, installing, operating, or examining the SG2 Controller.

WARNING: Personal injury may result from improper operation.
CAUTION: The SG2 smart relay may be damaged by improper operation.

Precaution for Installation

I
Compliance with the installation instructions and the user manual is absolutely necessary. Failure to comply could lead to improper operation, equipment damage or in extreme cases even death, serious bodily injury or considerable damage to property.

I.
When installing the open-board models, insure that no wiring or foreign materials can fall into the exposed circuits and components. Damage to equipment, fire, or considerable damage to property could result.

Always switch off power before you wire, connect, install, or remove any module.
The wiring for the SG2 smart relay is open and exposed. For the open-board models, all electrical components are exposed. For this reason, it is recommended the SG2 smart relay be installed in an enclosure or cabinet to prevent accidental contact or exposure to the electrical circuits and components.

Never install the product in an environment beyond the limits specified in this user manual such as high temperature, humidity, dust, corrosive gas, vibration, etc.

Precaution for Wiring

Improper wiring and installation could lead to death, serious bodily injury or considerable damage to property.

IThe SG2 smart relay should only be installed and wired by properly experienced and certified personnel.

Make sure the wiring of the SG2 smart relay meets all applicable regulations and codes including local and national standards and codes.

Be sure to properly size cables for the required current rating.
Always separate AC wiring, DC wiring with high-frequency switching cycles, and low-voltage signal wiring.

Precaution for Operation

\square To insure safety with the application of the SG2 smart relay, complete functional and safety testing must be conducted. Only run the SG2 after all testing and confirming safe and proper operation is complete. Any potential faults in the application should be included in the testing. Failure to do so could lead to improper operation, equipment damage or in extreme cases even Death, serious bodily injury or considerable damage to property.

When the power is on, never contact the terminals, exposed conductors or electrical components. Failure to comply could lead to improper operation, equipment damage or in extreme cases even death, serious bodily injury or considerable damage to property.

It is strongly recommended to add safety protection such as an emergency stop and external interlock circuit in case the SG2 smart relay operation must be shut down immediately.

Examination before Installation

Every SG2 smart relay has been fully tested and examined before shipment. Please carry out the following examination procedures after unpacking your SG2 smart relay.

- Check to see if the model number of the SG2 matches the model number that you ordered.
- Check to see whether any damage occurred to the SG2 during shipment. Do not connect the SG2 smart relay to the power supply if there is any sign of damage.

Contact $\boxed{C B C}$ if you find any abnormal conditions as mentioned above.

Environmental Precautions

The installation site of the SG2 smart relay is very important. It relates directly to the functionality and the life span of your SG2. Please carefully choose an installation site that meets the following requirements:

- Mount the unit vertically
- Environment temperature: $-4^{\circ} \mathrm{F}-131^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}\right)$
- Avoid placing SG2 close to any heating equipment
- Avoid dripping water, condensation, or humid environment
- Avoid direct sunlight
- Avoid oil, grease, and gas
- Avoid contact with corrosive gases and liquids
- Prevent foreign dust, flecks, or metal scraps from contacting the SG2 smart relay
- Avoid electric-magnetic interference (soldering or power machinery)
- Avoid excessive vibration; if vibration cannot be avoided, an anti-rattle mounting device should be installed to reduce vibration.

Disclaim of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

SG2 Model Identification

Quick Start Setup

This section is a simple guide for connecting, programming and operating your new SG2 smart relay. This is not intended to be the complete instructions for programming and installation of your system. Refer to other sections in the manual for more detailed information.

Install SG2 Client Software

Install the SG2 Client Software from CD or from the free internet download at www.taian-technology.com

Connect Power to SG2 smart relay

Connect power to the Smart Relay using the below wiring diagrams for AC or DC supply for the applicable modules. See "Chapter 2: Installation" for complete wiring and installation instructions.

Connect Programming Cable

Remove the plastic connector cover from the SG2 using a flathead screwdriver as shown in the figure below. Plug in the plastic connector end of the programming cable into the SG2 smart relay as shown in the figure below. Connect the opposite end of the cable to an RS232 serial port or USB port on the computer.

Establish Communication

a. Open the SG2 Client software and select "New LAD" as shown below left.
b. Select "Operation/Link Com Port..." as shown below right.

c. Select the correct Com Port number where the programming cable is connected to the computer then press the "link" button.

d. The SG2 Client will then begin to detect the connected smart relay to complete its connection.

Write simple program

a. Write a simple one rung program by clicking on the leftmost cell at line 001 of the programming grid, then click on the "M" contact icon on the ladder toolbar, as shown below. Select M01 and press the OK button.
See "Chapter 4: Ladder Programming instructions" for complete instruction set definitions.

Note: If the ladder toolbar is not visible at the bottom of the screen, select $\underline{\text { View/Ladder Toolbar from the menu to }}$ enable.
b. Use the "A" key on your keyboard (or the "A" icon on the ladder toolbar) to draw the horizontal circuit line from the M contact to the right most cell, as shown below.

c. Select the "Q" coil icon from the ladder toolbar and drop it on the right most cells. Select Q01 from the dialog and press OK as shown below. See "Chapter 4: Ladder Programming instructions" for complete instruction set definitions.

d. Test the simple program. From the Operation menu, select the Write function and write the program to the connected smart relay as shown below.

e. Select the RUN icon from the toolbar, and select "No" when the pop-up message asks "Do you want to read program from module?", as shown below.

```
|Pile Edit Operation Viex Help
```

f. On the Input Status dialog, click on M01 to activate the contact M01 which will turn ON the Output Q01 as shown below. The highlighted circuit shows the active part, and the first Output (Q01) on the connected smart relay will be ON. See "Chapter 3: Programming Tools" for more detailed software information.

```
Male Edit Operation Yiew Help
```


Chapter 2: Installation

General Specifications 11
Product Specifications 14
Mounting 16
Wiring 18
K type Indicator Light 20

General Specifications

SG2 is a miniature smart Relay with a maximum of $44 \mathrm{I} / \mathrm{O}$ points and can be programmed in Relay Ladder Logic or FBD (Function Block Diagram) program. The SG2 can expand to its maximum I/O count by adding 3 groups of 4-input and 4-output modules.

Power Supply	
Input Power Voltage Range	24V DC Models: 20.4-28.8V 12V DC Models: 10.4~14.4V AC Models: 85-265V 24V AC Models: 20.4-28.8V
Power Consumption	24VDC: 12-point :125mA 20-point: 185mA 12VDC: 12-point: 195mA 20-point: 265 mA 100-240VAC: 100 mA 24VAC: 290 mA
Wire Size (all terminals)	26 to 14 AWG

Programming		
Programming languages	Ladder/Function Block Diagram	
Program Memory	300 Lines or 260 Function Blocks	
Programming storage media	Flash	
Execution Speed	10ms/cycle	
LCD Display	Lines x 16 characters	
Timers	Ladder: 31; FBD: 250	
Maximum Number	Timing ranges	
Counters	Ladder: 31; FBD: 250	
Maximum Number	999999	
Highest count	1	
Resolution	Ladder: 31; FBD: 250	
RTC (Real Time Clock)	1min	
Maximum Number	week, year, month, day, hour, min	
Resolution	Time span available Compare versus other inputs Analog compare Maximum Number	

Environmental

Chapter 2 Installation
12

Enclosure Type	IP20
Maximum Vibration	1 G according to IEC60068-2-6
Operating Temperature Range	-4° to $131^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Storage Temperature Range	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Maximum Humidity	90% (Relative, non-condensing)
Vibration	0.075 mm amplitude, 1.0 g acceleration
Weight	8 -point:190g $10,12-$ point: $230 \mathrm{~g} \mathrm{(C} \mathrm{type:} 160 \mathrm{~g})$ 20-point: $345 \mathrm{~g} \quad$ (C type: 250 g$)$
Agency Approvals	CUL, CE, UL

Digital Inputs	
Current consumption	3.2mA @24VDC; 4mA @12VDC 1.3 mA @100-240VAC 3.3mA @24VAC
Input Signal "OFF" Threshold	24VDC: < 5VDC; 12VDC: < 2.5VDC 100-240VAC : < 40VAC 24VAC: <6VAC
Input Signal "ON" Threshold	24VDC: > 15VDC 12VDC: > 7.5VDC 100-240VAC : > 79VAC 24VAC: >14VAC
Input On delay	24, 12VDC: 5ms 240VAC: 25ms 120VAC: 50ms 24VAC: 5ms
Input Off Delay	24, 12VDC: 3ms 240VAC: 90/85ms 50/60Hz 120VAC: $50 / 45 \mathrm{~ms} 50 / 60 \mathrm{~Hz}$ 24VAC: 3ms
Transistor device compatibility	PNP, 3-wire device only
High Speed Input frequency	1 kHz
Standard Input frequency	$<40 \mathrm{~Hz}$
Required protection	Inverse voltage protection required

Analog Inputs	
Resolution	Basic unit: 12 bit Expansion unit: 12bit
Voltage Range acceptable	Basic unit: Analog input: 0-10VDC voltage, 24VDC when used as discrete input; Expansion unit: Analog input: 0-10VDC voltage or 0-20mA current
Input Signal "OFF" Threshold	< 5VDC (as 24VDC discreet input)
Input Signal "ON" Threshold	> 9.8VDC (as 24VDC discreet input)
Isolation	None
Short circuit protection	Yes
Total number available	Basic unit: A01-A04 Expansion unit: A05-A08

\qquad

Relay Outputs	
Contact material	Ag Alloy
Current rating	8 A
HP rating	$1 / 3 \mathrm{HP@120V} 1 / 2 \mathrm{HP} @ 250 \mathrm{~V}$
Maximum Load	Resistive: 8A /point Inductive: 4A /point
Maximum operating time	15 ms (normal condition)
Life expectancy (rated load)	100 k operations
Minimum load	16.7 mA

Transistor Outputs	
PWM max. output frequency	$1.0 \mathrm{kHz}(0.5 \mathrm{~ms}$ on, 0.5 ms off $)$
Standard max. output frequency	100 Hz
Voltage specification	$10-28.8 \mathrm{VDC}$
Current capacity	1 A
Maximum Load	Resistive: $0.5 \mathrm{~A} /$ point Inductive: $0.3 \mathrm{~A} /$ point
Minimum Load	0.2 mA

Product Specifications

Part \#	Input Power	Inputs	Outputs	Display \& Keypad	RS-485 Communic	Max I/O
SG2-12HR-D	24 VDC	6 DC, 2 Analog	4 Relay	\checkmark, Z01-Z04	N/A	$36+4 * 1$
SG2-12HT-D		6 DC, 2 Analog	4 Trans.	, Z Z01-Z04	N/A	$36+4 * 1$
SG2-20HR-D		8 DC, 4 Analog	8 Relay	, Z Z01-Z04	N/A	$44+4 * 1$
SG2-20HT-D		8 DC, 4 Analog	8 Trans.	, Z Z01-Z04	N/A	$44+4 * 1$
SG2-20VR-D		8 DC, 4 Analog	8 Relay	V, Z01-Z04	Built-in MODBUS	$44+4 \quad * 1$
SG2-20VT-D		8 DC, 4 Analog	8 Trans.	, Z Z01-Z04	Built-in MODBUS	$44+4 * 1$
SG2-12HR-12D	12 VDC	6 DC, 2 Analog	4 Relay	\checkmark, Z01-Z04	N/A	$36+4 * 1$
SG2-20HR-12D		8 DC, 4 Analog	8 Relay	\checkmark, Z01-Z04	N/A	$44+4 * 1$
SG2-20VR-12D		8 DC, 4 Analog	8 Relay	\checkmark, Z01-Z04	Built-in MODBUS	$44+4 \quad * 1$
SG2-10HR-A	100-240 VAC	6 AC	4 Relay	, , Z01-Z04	N/A	$34+4 * 1$
SG2-20HR-A		12 AC	8 Relay	, , Z01-Z04	N/A	$44+4 \quad * 1$
SG2-12HR-24A	24VDC	8 AC	4 Relay	, , Z01-Z04	N/A	$36+4 * 1$
SG2-20HR-24A		12 AC	8 Relay	, , Z01-Z04	N/A	$44+4 * 1$
Expansion Modules and Accessories						
SG2-8ER-D		4 DC	4 Relay	N/A	N/A	N/A
SG2-8ET-D	DC	4 DC	4 Trans.	N/A	N/A	N/A
SG2-8ER-A	100-240VAC	4 AC	4 Relay	N/A	N/A	N/A
SG2-8ER-24A	24VAC	4 AC	4 Relay	N/A	N/A	N/A
SG2-4AI	24 VDC	4 Analog	N/A	N/A	N/A	N/A
SG2-4PT		4 Analog	N/A	N/A	N/A	N/A
SG2-2AO		N/A	2 Analog	N/A	N/A	N/A
SG2-MBUS		Communications Module, RS-485 ModBus RTU slaver				
SG2-DNET		Communications Module, DeviceNet Group2 slaver				
SG2-PBUS		Communications Module, Profibus-DP slaver				
EN01		Communications Module, TCP/IP				
GSM		Communications Module, EGSM 900MHz, DCS1800MHz				
SG2-PL01	SG2 Programming Cable, SG2 Programming software					
SG2-PM05(3rd)	SG2 Memory cartridge					
OEM "Blind" Models, No Keypad, No Display						
SG2-12KR-D	24VDC	6 DC, 2 Analog 4 Relay		X	N/A	36
SG2-12KT-D		6 DC, 2 Analog 4 Trans.		X	N/A	36
SG2-20KR-D		8 DC, 4 Analog 8 Relay		X	N/A	44
SG2-20KT-D		8 DC, 4 Analog 8 Trans.		X	N/A	44
SG2-12KR-12D	12VDC	6 DC, 2 Analog	4 Relay	X	N/A	36
SG2-10KR-A	100-240VAC	6 AC	4 Relay	X	N/A	34
SG2-20KR-A		12 AC	8 Relay	X	N/A	44
OEM "Baseboard" Models, No Keypad, No Display, No Expansion						
SG2-12CR-D	24VDC	6 DC, 2 Analog 4 Relay		X	N/A	12
SG2-12CT-D		6 DC, 2 Analog	4 Trans.	X	N/A	12
SG2-20CR-D		8 DC, 4 Analog	8 Relay	X	N/A	20
SG2-20CT-D		8 DC, 4 Analog	8 Trans.	X	N/A	20

Chapter 2 Installation

SG2-10CR-A	$100-240$ VAC	6 AC	4 Relay	X	N/A	10
SG2-20CR-A		8 Relay	X	N/A	20	

※ If module with keypad and display, Max IO can be added keypad input Z01-Z04.
※ More information about Product Specifications to see "chapter 6: Hardware Specification".

Mounting

DIN-rail Mounting

The SG2 smart relay should always be mounted vertically. Press the slots on the back of the SG2 and expansion module plug CONNECTOR onto the rail until the plastic clamps hold the rails in place. Then connect the expansion module and CONNECTOR with the Master (press the PRESS-BUTTON simultaneously)

It is recommended to apply a DIN-rail end clamp to hold the SG2 in place.

Direct Mounting

Use M4 screws to direct mount the SG2 as shown. For direct installation of the expansion module, slide the expansion module and connect with the Master after the Master is fixed.

Wiring

!
WARNING: The I/O signal cables should not be routed parallel to the power cable, or in the same cable trays to avoid the signal interference.
\triangle
To avoid a short circuit on the load side, it is recommended to connect a fuse between each output terminals and loads.
Wire size and Terminal Torque

				\square	\square
mm^{2}			$0.14 \ldots 2.5$	$0.14 \ldots 2.5$	$0.14 \ldots 1.5$
AVG		$26 \ldots 18$	$26 \ldots 14$	$26 \ldots 14$	$26 \ldots 16$

Input 12/24V DC

Input 100~240V /24V AC

Sensor Connection

Output (Relay)

Output (Transistor)

IO Link OR Remote I/O Link

The power supply and the I/O supply should share the same power source. Only short circuit the first and the last module.

When I/O link, the net can connect 8 products in max. (ID: 0-7).
When Remote I/O is available, it only can connect 2 products max (Master \& Slaver).
※ More information about RS485 Model communication to see "Chapter 720 Points RS485 type Models Instruction".
(1)-1A quick-blowing fuse, circuit-breaker or circuit protector
(2)-Surge absorber (43V DC)
(3)-Surge absorber (Input 24VAC:43V; Input 100~240VAC:430V AC)
(4)-Fuse, circuit-breaker or circuit protector
(5)-Inductive load
(6)-Comply with standard: EIA RS-485.

K type Indicator Light

There is an indicator light to indicate the status of SG2 (K type) smart, and the below table shows the relationship between the light and the SG2 status.

State of light	Description
	Power up, SG2 is stopping
	Flicker slow(1Hz), SG2 is running
	Flicker quick(5Hz), SG2 is under failure status -Flash error -Illogicality in user program - Expansion model error -RTC error

Chapter 3: Program Tools

PC Programming Software "SG2 Client" 21
Installing the Software 21
Connecting the Software 21
Start Screen 21
Ladder Logic Programming Environment 22
Menus, Icons and Status Bar. 23
Programming 24
Simulation Mode 25
Establish Communication 25
Writing Program to smart relay 26
Online Monitoring/Editing 27
Operation menu 28
HMI/TEXT 29
Program Documentation 33
Analog Output Set 35
3-Row/5-Row 36
Data Register Set. 37
View menu 39
FBD Programming Environment 40
Menu, Icons and Status Bar 40
Programming 41
Simulation Mode 42
Online Monitoring/Editing 42
Symbol and Parameters list 43
Memory Cartridge (sold separately) 45
LCD Display and Keypad. 46
Keypad 46
Original Screen 47
LCD Display Main Menu 50
RTC Daylight saving setting 55
SG2 system error 59

PC Programming Software "SG2 Client"

T he SG2 Client programming software provides two edit modes, Ladder Logic and Function Block Diagram (FBD). The SG2 Client software includes the following features:

1. Easy and convenient program creation and editing.
2. Programs can be saved on a computer for archiving and reuse. Programs can also be uploaded directly from a SG2 and saved or edited.
3. Enables users to print programs for reference and review.
4. The Simulation Mode allows users to run and test their program before it is loaded to the controller.
5. Real-time communication allows the user to monitor and force I/O on the SG2 smart relay operation during RUN mode.

Installing the Software

Install the SG2 Client Software from CD or from the free internet download at www.taian-technology.com.

Connecting the Software

Remove the plastic connector cover from SG2 using a flathead screwdriver as shown in the figure below. Insert the plastic connector end of the programming cable into the SG2 smart relay as shown in the figure below. Connect the opposite end of the cable to an RS232C serial port on the computer.

Start Screen

Run the SG2 Client software and the below Start screen will be displayed. From this screen, you can perform the following functions

New Ladder Program

Select File --> $\underline{\text { New }}$-->New $\underline{\mathbf{L} A D}$ to enter the development environment for a new Ladder program

New FBD Program

Select File -->New -->New FBD to enter the development environment for a new FBD (Function Block Diagram) program.

Open Existing File

Select File -->O्Open to choose the type of file to open (Ladder or FBD), and choose the desired program file, and then click Open.

Ladder Logic Programming Environment

The Ladder Logic Programming Environment includes all the functions for programming and testing the SG2 using the Ladder Logic programming language. To begin a new program select $\underline{\text { File-- }} \mathbf{>} \mathbf{N} \mathbf{N} \mathbf{w}$, and select the desired model of SG2, and the number of connected expansion units if applicable, as shown below.

Menus, Icons and Status Bar

The Ladder programming environment includes the following Menus, Icons and Status Displays

1. Menu bar - Five menu selections for program development and retrieval, editing, communication to connected controllers, configuration of special functions and viewing preference selections.
2. Main Toolbar - (From Left to Right)

Icons for create a new program, open a program, save a program and print a program.
Icons for Keypad, Ladder view, HMI/Text edit and Symbol (comments) edit.
Icons for Monitor, Simulator, Simulator Controller, Controller Mode changes (Run, Stop, and Quit), and Read/Write programs from/to the SG2 smart relay.
3. Usage List - List for all memory types and addresses used with the current open program. Used addresses are designated by a "*" symbol below each address.
4. Amount of free programming memory available.
5. Current Mode - Program mode, Simulator mode, Monitor mode.
6. Ladder Toolbar - Icons for selecting and entering all available Ladder Logic instructions.
7. Status Bar - Status of current open project and connect SG2 smart relay.

Programming

The SG2 Client software can be programmed by either drag-and-drop of instructions or by using keyboard entry commands. Below is an example of some common methods of entering programming instructions.

The "A" and "L" keys or icons are used to complete parallel and serial circuits. The right column is for output coils.

Simulation Mode

The SG2 Client software includes a built-in simulator to test and debug programs easily without the need for downloading to a controller. To activate simulation mode, simply press the RUN icon. The program below is shown in simulation mode, identifying the significant available features.

Establish Communication

The following is the simple procedure for establishing communication between PC and the SG2 smart relay.
a. Select "Operation/Link Com Port..." as shown below.

b. Select the correct Com Port number where the programming cable is connected to the computer then press the "link" button.
c. The SG2 Client software will then begin to detect the connected smart relay to complete its connection.

Writing Program to smart relay

From the Operation menu, select the Write function and write the program to the connected smart relay as shown below, or press Write button to write program to connected smart relay as shown below.

Online Monitoring/Editing

The SG2 Client software allows for online monitoring of the currently running program during runtime. Additional online functions include, I/O forcing, and Mode changes (Run/Stop/Quit).

※ The SG2 Client software does not support runtime logic editing changes. All logic edits to contacts, coils, Timers/Counters, and circuit connecting lines must be written to the connected smart relay while in Stop mode.

Operation menu

The Operation menu, includes several system configuration functions for both online and offline setup. The following explains the details of each function.

Operation Yiew Help	Functional Description
Monitor	Online function for runtime monitor when connected to a smart relay
Simulator	Offline function for testing and debugging a program
Simulator Control	Self-motion simulator control
Run	Control running or simulator if not connect a smart relay
\checkmark Stop	Stop running or stop simulator
Power	Simulator control power down
Pause	Pause simulator
Quit	Quit monitor or simulator mode
Read	Read program form smart relay
Write	Write program to smart relay
Compare...	Read program form smart relay and compare difference with PC program
RTC Set...	Online function for setup of the Real-time clock/calendar
Analog Set...	Setup analog input A01-A08 gain and offset
Password...	Set a password for accessing the current program after upload to the smart relay
Language	Change SG2 smart relay menu language
Module System Set...	Dialog for changing important system setup functions including Module ID...
Link Com Port...	Select the port communication with smart relay

HMI/TEXT

This function block can display information on 16×4 LCD screen:

1. Preset value or current value of function blocks, such as Counter, Timer, RTC, Analog comparator and DR register etc. Under running mode, to modify the preset value via HMI is available.
2. Coils status, such as input coils I, Z, X and auxiliary coils M . Under running mode, to modify the M status via HMI is available.
3. Analog input value (A, AT) and analog output value (AQ);
4. Build-in ASCII code and multi-language characters; Build-in Chinese characters; User-defined Chinese characters;
5. Telephone number used by GSM module (SMS Alarm function).

HMI/TEXT editing and parameter setting interface, as shown below.

HMI/TEXT setting (step 1~7):

(1) Enter H01 coil
(2) Into HMI/TEXT edit frame
(3) Choice the "T"
(4) Choice the "E"
(5) Choice T01 current
(6) Choice T01 current (unit)
(7) Choice T01 present (unit), user can modify T01 preset value when H coil enable and display on LCD.

Download to SG2, and I01 turn ON, or press "SEL" if the H coils is set to mode 1, then the SG2 LCD will display the first H text as shown below.

I , Press " \uparrow " or " \downarrow " to choice the nearest H coil
II, Press "SEL"+" 1 " or " l"and "OK" update T01 preset value (In this example, 050.0 can update, T01 preset value depends on HMI/TEXT edit frame setting.)

Build-in ASCII code and multi-language characters:

Multi-language characters including English, French, Spanish, Italian, German, Portuguese, Polish;
Also, according to the different settings, you can display Russian or Turkish characters.

85 Built-in Chinese characters, which read as following left of the HMI/TEXT editor window;
60 characters which user define, edit step $1 \sim 6$ as follows right of the HMI/TEXT editor window.

Setting telephone number (GSM module SMS function):

Build-in 20 HMI (H01~H14) can be set telephone number for SMS alarm. When HMI which set telephone is enabled, SG2 save text information. Extension GSM module send this HMI text to telephone after reading this HMI text.

Line1 set telephone number (shown as (1). Only set by dialog(5) and max 15 number characters.
Line2~line4 set text information (show as (2)), include preset value and current value of function block, coil status (shown as (3)) and ASCII characters (shown as (4).

Stop display
1386111
Analog Alarm! Reset\#M01
A01=\#\#.\#\#V

Run display

PHONE
Analog Alarm!
Reset OFF
A01 $=09.00 \mathrm{~V}$

Example:
1, SG2 saved H01 display information (M01 status and A01 value) when M01 is enabled rising edge.
2, Extension GSM module send SMS to telephone (H01 line1 number) after reading message (H01 line2~line4 text information).

Example: HMI/TEXT and Z keypad input function

(1) Press "SEL" to display cursor
(2) Press " \uparrow ", " \downarrow ", " $\leftarrow ", " \rightarrow$ " to move cursor
(3) Press "SEL" again to choice modified position
(4) Press " \uparrow ", " \downarrow " to change number and press " $\leftarrow ", " \rightarrow$ " to move cursor
(5) Press "OK" to make sure the modify value

Press " \leftarrow " (Z02) to disable H03 coil, and the LCD display changes to initial frame.

Press " \downarrow "(Z03) to reset Timer (T01, T02, T03) as program designed.

Program Documentation

The SG2 Client software includes the ability to document a program using Symbols and Line Comments. Symbols are used to label each I/O address up to a length of 12 characters. Line Comments are used to document sections of a program. Each Line Comment can have up to 4 lines with each line containing up to 50 characters in length. Below are examples of entering Symbols and Line Comments.

Symbol...

The Symbol editing environment can be access through the menu using the Edit>>Symbol... selection or using the symbol icon on the main toolbar shown below.

The Symbol editing environment allows for documenting all the contact and coil memory types, and selecting display modes as shown below.

Line Comments

The Line Comment editor is accessed by clicking the "W" icon on the Ladder Toolbar. After clicking on the "W" icon, to drag the line number you want to comment and release, and then type the desired comments and press OK.

Analog Output Set...

The AQ editing environment can be access through the menu using the Edit>> Analog Output Set... selection shown below. CH1~CH4 correspond to analog output AQ01~AQ04.

The range is $0 \sim 4095$ if the output mode is voltage mode.
The range is $0 \sim 2047$ if the output mode is current mode.
The preset value of AQ can be set as either a constant or a code of other data. The output mode of AQ and preset value are set as below. More information about output mode and displaying to see: Chapter 4: Relay Ladder Logic Programming-AQ (Analog Output).

AQ output mode (current or voltage) depends on the current value of DRD0~DRD3 register. The current value of DRD4~DRD7 decides the AQ output value!

The below table show an example for the setting value and output results.

	Mode Register	Output Value Register	AQ output value
Channel1	DRD0=0 AQ output mode 1: voltage mode and reset value when stop;	DRD4=3000	AQ01=732 (DRD4/4.095) AQ output 7.32V
Channel2	DRD1=1 AQ output mode 2: Current mode and reset value when stop;	DRD5=A01*4.095 Current mode 0~2047	AQ02=A01 Current mode 0~500
Channel3	DRD2=2 AQ output mode 3: voltage mode and keep value when stop;	DRD6= V01*4.095 Voltage mode 0~4095	AQ03=V01 Voltage mode 0~1000
Channel4	DRD3=3 AQ output mode 4: Current mode and keep value when stop;	DRD7=2047	AQ04=500 (DRD7/4.095) AQ output 20.00mA

※ When output value type of AQ is set to constant, AQ output value changed by DR value ($\mathrm{AQx}=\mathrm{DRx} / 4.095$);
※ When output value type of $A Q$ is set to other parameters variables, $D R$ value changed by $A Q$ output value ($\mathrm{DRx}=\mathrm{AQx} * 4.095$).

3-Contact/5-Contact

There are 3-contact and 5-contact edit modes available in SG2 LADDER mode.
In 3-Contact mode, there are three inputs and one output available in one ladder line. And the maximum line number is 300 .

In 5-Contact mode, there are five inputs and one output available in one ladder line. And the maximum line number is 200 .

In 3-Contact mode, if the ladder line is more than 200, the mode can't change to 5-Row.
In 5-Contact mode, if the input coil number is more than three, the mode can't change to 3-Ros.

Data Register Set...

The content of Data Register is either unsigned or signed, it can be set as shown below. Selecting Unsigned, the range of DR is 0~65535; and selecting Signed, the range of DR is $-32768 \sim 32767$.

After the operating above, the Data Register editing environment can be access through the menu using the Edit>> Data Register Set... selection shown below. The preset value of DR can be set as either a constant or a code of other data type. For more information about DR to see: Chapter 5: Relay Ladder Logic Programming-DR (Data Register).

DR is set as signed shown below.

Special DR Register Function

If the special DR coil, DR65~DRF0, is used as a special register, it dose not need to be enabled; it works as common register (it current value will equal to the preset value) once it is enabled.

The DR65~DRF0 can retain the current value when stop or power down.

DRD0 ~ DRE3 as special registers used to set parameters, the output value function is as follows:

No.	Function description	
DRD0	AQ01 output mode	0 , voltage mode and reset value when stop; 1 , current mode and reset value when stop; 2, voltage mode and keep value when stop; 3, current mode and keep value when stop;
DRD1	AQ02 output mode	
DRD2	AQ03 output mode	
DRD3	AQ04 output mode	
DRD4	AQ01 output value	Analog output value 0~4095;
DRD5	AQ02 output value	
DRD6	AQ03 output value	
DRD7	AQ04 output value	
DRD8	I/O interface hidden	Refer to "Chapter3:LCD Display and Keypad > Original screen"
DRD9~DRE3	Reserved;	

DRC9~DRCF and DRE4~DRF0 as special registers used to store status, the output current value function is as follows:

No.	Function description	
DRC9	Output pulse number of instruction PLSY	
DRCA	AT01 current degree Fahrenheit	Used as normal registers when no AT01~AT04 input, such as don't connected with extension module 4PT;
DRCB	AT02 current degree Fahrenheit	
DRCC	AT03 current degree Fahrenheit	
DRCD	AT04 current degree Fahrenheit	
DRCE	Reserved	
DRCF	Reserved	
DRE4	A05 input electric current 0~2000	Used as normal registers when no A05~A08 analog input, such as don't connected with extension module 4AI;
DRE5	A06 input electric current 0~2000	
DRE6	A07 input electric current 0~2000	
DRE7	A08 input electric current 0~2000	
DRE8	A01 current value 0~4095	Used as normal registers when no A01 and A02 analog input, such as AC type;
DRE9	A02 current value 0~4095	
DREA	A03 current value 0~4095	Used as normal registers when no A03 and A04 analog input, such as AC type or 12points DC type;
DREB	A04 current value 0~4095	
DREC	A05 current value 0~4095	Used as normal registers when no A05~A08 analog input, such as don't connected with extension module 4AI.
DRED	A06 current value 0~4095	
DREE	A07 current value 0~4095	
DREF	A08 current value 0~4095	
DRF0	Reserved	

View menu

The view menu includes software display option selection. The following explains the details of each function.

Wiew Help	Functional Description
\checkmark I/ $\underline{0}$ \checkmark Function \checkmark Capacity	Display usage list
	Display function block and parameter
	Display capacity left space
\checkmark Input Status Tool Data Link Status Tool... \checkmark Simulation Analog Tool... \checkmark Expand Analog Tool... \checkmark High Speed Input Tool... \checkmark AT Tool...	Monitoring or Simulation coil status (I, X, Z, M, N)
	Simulation IO Link W status(only RS485 type)
	Monitoring or Simulation analog input A01~A04(only DC type)
	Monitoring or Simulation expand analog input A05~A08
	Simulation high speed input(only DC type)
	Monitoring or Simulation expand temperature input AT01~AT04
\checkmark Ladder Toolbar	Display Ladder Toolbar

- Analog input A01~A04, correspond to coil input I09~I0C;

When analog input increased to 9.98 v , the coil input set ON ;
When analog input reduced to 5.00 v , the coil input set OFF;

- Expand analog input A05~A08, the input data value $0 \sim 9.99 \mathrm{v}$, and current display mode $0 \sim 20.00 \mathrm{~mA}$;
- Expand temperature input AT01~AT04, the input data value $-100.0 \sim 600.0^{\circ} \mathrm{C}$;
- High speed input tools, used for simulation high speed input I01\&I02.

FBD Programming Environment

The FBD Programming Environment includes all the functions for programming and testing the SG2 using the FBD programming language. To begin a new program select File--> $\underline{\text { New }}$, and select the desired model of SG2, as shown right.

FBD programming operation is same as Ladder.

Menu, Icons and Status Bar

FBD environment include menu, icon and status bar refer to below figure.

1. Menu: 6 menu options, including file operations, editing, and SG2 communications settings, configure the special features, display settings, help information and other functions;
2. Tools bar: The first line of icons from left to right in turn is expressed as: new, open, save program icons, monitoring, simulation, control mode change (RUN, STOP, QUIT), read program form SG2, write program to SG2; The second line of icons from left to right in turn is expressed as: button panel displays, FBD display, HMI / TEXT editor, comments Symbol Editor icon, the parameter list, etc.;
3. Programming Area: Coils and logic function blocks which need to be edited should put into this area, and use the connection to connect;
4. FBD tools bar: Each option can be chosen to edit the coil and function block instructions;

From left to right for normal selection operation, connection, coil, logic function blocks, special function blocks, scissors operation, deletion, and annotation tools.
5. Status bar: Indicates that the current program and the connection status and other information SG2;

Programming

The program can be edited by mouse, the following example describes the instructions for programming. Click the right mouse button, selecting "Constants/Connectors" on the appearing screen like below left one, or simply click on the FBD the toolbar (see below right), then all available coil icons will come out.

Were selected symbol " M " and the " Q ", the icon will be put to the editor area, and used to connect the two coils connected as the left part of (Operation 1~3); if multiple cross-connections, they can use "scissors" functional separation of the connection shown in the following figure the right part (operation 4);

Simulation Mode

SG2 Client build-in simulation test function, the following diagram shows the display characteristics in simulation mode.

Online Monitoring/Editing

Symbol and Parameters list

FBD list symbols for coils and function blocks which only been used in program, and will comment tags appear in the program;

Symbol also can describe the function of main program. The following diagram operation, click the toolbar "Comments", Comments configuration dialog box appears, edit and click "OK", notes will be displayed in the programming interface, and can be moved by dragging the mouse position.

Parameters List:

Parameters list display coils and functional blocks which used in program and explain coil functions and tags, function block settings and markings and other information, as shown below.

[日] File	Edit Operation View	Window
[3] 2	Select Model	
(\%	KeyPad	Ctrl+K
	\checkmark EBD	Ctrl + F
	Undo	Ctrl+Z
	Redo	Ctrl+Y
	Cut	Ctr $1+\mathrm{X}$
	Copy	Ctrl+C
	Paste	Ctrl+V
	Delete	Del
	Select All	Ctrl + A
	Clear Comments	
	Find. .	
	HMI/ Text	
	Symbol. .	
	Parameters List...	
	Properties	Space

Memory Cartridge (sold separately)

PM05 (3rd) is a special kind of PM05, it can be used in all version of SG2. There is an icon 3rd on SG2 V3 smart and side of PM05 (3rd).

About to use PM05 and PM05 (3rd) with SG2V2/3, see next figure:

The optional PM05 (3rd) memory cartridge is used to easily transfer programs from one smart relay to another. The PM05 (3rd) memory cartridge plugs into the same connector as the programming cable (see procedure below). 1. Remove the plastic connector cover from SG2 using a flathead screwdriver as shown in the figure below.
2. Insert the PM05 (3rd) memory cartridge onto the connector as shown below.

3. From the display keypad on the face of the SG2 smart relay, select either WRITE or READ to transfer the program to PM05 (3rd) or from the PM05 (3rd) memory cartridge to the smart relay.
4. K type and C type, electrify the product, the program in PM05 (3rd) will automatically download and executed.
5. Program in different types are not compatible, here are the regulations:

A-1: 10/12 point type program ---- available in 20 point type
A-2: 20 point type program ---- unavailable in 10/12 point type
B-1: AC type program ---- available in DC type
B-2: DC type program ---- unavailable in AC type
C-1: Relay type program ---- available in Transistor type
C-2: Transistor type program ---- unavailable in Relay type
D-1: Not-RS485 type Model program ---- available RS485 type Model
D-2: RS485 Model type program ---- unavailable Not-RS485 type Model
E-1: SG2V2 program ---- available SG2V3 type
E-2: SG2V3 program ---- unavailable SG2V2 type

LCD Display and Keypad

Keypad

Most SG2 CPU units include the built-in LCD Display and Keypad. The keypad and display are most often used for changing timer/counter set points, controller mode changes (Run/Stop), uploading/downloading to the PM05 memory cartridge, and updating the RTC (Real Time Clock/Calendar). Although, logic programming can be performed from the keypad and display, it is highly recommended to only perform logic changes using the SG2 Client software. Below is an overview of the basic keypad and display functions.

Select (SEL) - Used to select the available memory and instruction types for editing. Holding the Select button will display all "H" HMI/Text messages on the LCD.

OK - Used to accept the selection displayed of an instruction or function. It is also used to select any of the Main Menu options on the LCD.

Note: Press the "SEL" and "OK" simultaneously to insert a rung above the current active cursor position.

Escape - Used to exit a selected display screen and go to the previous screen. When in a ladder display screen, press the ESC to display the main menu.

Delete - Used to delete an instruction or rung from the ladder program.

The 4 navigation buttons $(\uparrow \leftarrow \downarrow \rightarrow)$ are used to move the cursor throughout the functions of the SG2 display or active program. The 4 buttons also can be set programmable input coils $\mathrm{Z} 01-\mathrm{Z} 04$ ($‘ \uparrow$ ' $=\mathrm{Z} 01$, ' $\leftarrow '=\mathrm{Z} 02$, ' \downarrow ' $=\mathrm{Z} 03$, ' \rightarrow ' $=\mathrm{Z} 04$);

Original Screen

LCD displays 4-line state
© Original screen as power on

Press the button:

ESC	Enter Main Menu screen
$\begin{aligned} & \text { SEL }+\uparrow \downarrow \\ & \text { Or } \uparrow \downarrow \end{aligned}$	Under LADDER Mode,DRD8 current value=0, display the state of relays (I/Z/Q $\Leftrightarrow \mathrm{X} / \mathrm{Y}$ $\Leftrightarrow M \Leftrightarrow N \Leftrightarrow T \Leftrightarrow T \Leftrightarrow R \Leftrightarrow A T \Leftrightarrow A Q) \Leftrightarrow$ Original Screen
	Under FBD Mode, DRD8 current value=0, display the state of relays (I/Z/Q $\Leftrightarrow \mathrm{X} / \mathrm{Y} \Leftrightarrow \mathrm{M}$ $\Leftrightarrow N \Leftrightarrow A \Leftrightarrow A T \Leftrightarrow A Q) \Leftrightarrow$ Original Screen
$\begin{aligned} & \mathrm{SEL}+\leftarrow \rightarrow \\ & \mathrm{Or} \leftarrow \rightarrow \end{aligned}$	When display A05~A08 value, change voltage or current mode When display AT01~AT04 value, change Celsius display or Fahrenheit display
SEL	H Function will be displayed whose mode is 1 as the button is pressed.
SEL+OK	Enter RTC setting screen

© Expansion display State

※ Expansion module setting: refer to Main Menu "SET"
© Other Display State
Coils M, N, T, C, R, G status: (T/C/R/G display only Ladder mode)

Analog input A01~A04: 0~9.99V
A01 $=01.00 \mathrm{~V}$
$\mathrm{A} 02=02.00 \mathrm{~V}$
$\mathrm{A} 03=01.30 \mathrm{~V}$
$\mathrm{A} 04=07.04 \mathrm{~V}$

Expansion Analog input A05~A08: 0~9.99V or 0~20.00mA

Expansion temperature analog input AT01~AT04: -100.0~600.0 Cent degree or -148.0~1112.0 Fahrenheit degree

Expansion analog output AQ01~AQ04: 0~10.00V or 0~20.00mA
※ Setting voltage mode or current mode, more information to see: Chapter 4: Relay Ladder Logic Programming-AQ(Analog Output).

(O) Hidden I/O interface function:

SG2 can display the states for 14 sorts of coil, as shown in below table. Each bit of DRD8 current value (except bit 14 and 15) determines the corresponding IO interface to be displayed or not. When one bit equal 1 , the corresponding I/O interface is hidden (mean you can’t display the I/O interface by pressing SEL $+\uparrow \downarrow$ or $\uparrow \downarrow$).

Num	I/O interface		DRD8 current value
0	I/Z/Q:	I01~I0C,Z01~Z04,Q01~Q08	Bit0:* always display
1	X/Y	X01~X0C,Y01~Y0C	Bit1:=0 Display; =1 Not displayed
2	M1	M01~M1F	Bit2:=0 Display; =1 Not displayed
3	M2	M20~M3F	Bit3:=0 Display; =1 Not displayed
4	N1	N01~N1F	Bit4:=0 Display; =1 Not displayed
5	N2	N20~N3F	Bit5:=0 Display; =1 Not displayed
6	T	T01~T1F	Bit6:=0 Display; =1 Not displayed
7	C	C01~C1F	Bit7:=0 Display; =1 Not displayed
8	R	R01~R1F	Bit8:=0 Display; =1 Not displayed
9	G	G01~G1F	Bit9:=0 Display; =1 Not displayed
10	A1	A01~A04	Bit10:=0 Display; =1 Not displayed
11	A5	A05~A08	Bit11:=0 Display; =1 Not displayed
12	AT	AT01~AT04	Bit12:=0 Display; =1 Not displayed
13	AQ	AQ01~AQ04	Bit13:=0 Display; =1 Not displayed

e.g. In order to hide some I/O interfaces. You can set DRD8 current value through running a Ladder/FBD program, you also can setting it by PC-LINK as shown below:

1. Open "Edit>I/O Display Set...":

2. Setting "I/O Display Set" as the picture shown below, and click OK :

I/0 Display Set

3. Down load the program.

This time I/O interface "M20~M3F, N20~N3F, R01~R1F, A05~A08, AT01~AT04, AQ01~AQ04" are hidden:

SEL $+\uparrow \downarrow$	Under LADDER Mode,DRD8 current value=1750, display the state of relays (I/Z/Q \Leftrightarrow
Or $\uparrow \downarrow$	$\mathrm{X} / \mathrm{Y} \Leftrightarrow \mathrm{M} 1 \Leftrightarrow \mathrm{~N} 2 \Leftrightarrow \mathrm{~T} \Leftrightarrow \mathrm{C} \Leftrightarrow \mathrm{G} \Leftrightarrow \mathrm{A} 1) \Leftrightarrow$ Original Screen

※ I/O interface can be hide in the same way in FBD.

LCD Display Main Menu

(1) The Main Menu as SG2 under 'STOP’ Mode.

Press "ESC" key on keypad after power on for entering into the Ladder main menu or FBD main menu, which depends on the program format, Ladder or FBD mode in SG2.

Menu		Description
$>$	LADDER	Ladder edit
	FUN.BLOCK	Ladder function block (timer/counter/RTC ...) edit
	FBD	FBD display
	RURAMETER	FBD block or LADDER function block parameter display
	DR display	
	Clear the user program and the password	
WRITE	Save user program to PM05 (3rd)	
READ	Read user Program from PM05	
SET	System setting	
RTC SET	RTC setting	
ANALOG SET	Analog setting	
PASSWORD	Password setting	
LANGUAGE	Select the language	
INITIAL	initially set Edit method	

(2) The Main Menu as SG2 under 'RUN' Mode.

>LADDERFUN. BLOCKPARAMETERSTOP	>FBD	>	LADDER	FBD
	PARAMETER		FUN.BLOCK	
	DATA REGISTER		PARAMETER	
			STOP	
DATA REGISTER WRITE	WRITE RTC SET		DATA REGISTER	
RTC SET	PASSNORD		WRITE	
>PASSWORD	>LANGUAGE		RTC SET	
WRITE			PASSWORD	
RTC SET			LANGUAGE	
PASSNORD >LANGUAGE				

Press the Button

$\uparrow \quad \downarrow$	Move the Cursor to select Main Menu
OK	Confirm the selected Function
ESC	Skip to Initial Screen

※SG2 can be modified, edited, cleared and read user program only when it is under STOP Mode.
※As the program is modified, SG2 will automatically backup it to FLASH.
© Main Menu LADDER

Press the Button

Button	Description
SEL	1. Ixx $\Rightarrow \mathrm{ixx} \Rightarrow-\Rightarrow$ space \Rightarrow Ixx (only for digital and character position of 1, 3, 5 column) 2. $\mathrm{Qxx} \Rightarrow$ space $\Rightarrow \mathrm{Qxx} \quad$ (only for digital and character position of 8 column) 3. $T \Rightarrow$ Space $\Rightarrow T \quad$ (all available but the $2,4,6$ column of the first line)
SEL, then \uparrow / \downarrow	1. $I \Leftrightarrow X \Leftrightarrow Z \Leftrightarrow Q \Leftrightarrow Y \Leftrightarrow M \Leftrightarrow N \Leftrightarrow D \Leftrightarrow T \Leftrightarrow C \Leftrightarrow R \Leftrightarrow G \Leftrightarrow I$ (the cursor located at $1,3,5$ column) 2. $\mathrm{Q} \Leftrightarrow \mathrm{Y} \Leftrightarrow \mathrm{M} \Leftrightarrow \mathrm{N} \Leftrightarrow \mathrm{T} \Leftrightarrow \mathrm{C} \Leftrightarrow \mathrm{R} \Leftrightarrow \mathrm{G} \Leftrightarrow \mathrm{H} \Leftrightarrow \mathrm{L} \Leftrightarrow \mathrm{P} \Leftrightarrow \mathrm{S} \Leftrightarrow \mathrm{AS} \Leftrightarrow \mathrm{MD} \Leftrightarrow \mathrm{PI} \Leftrightarrow \mathrm{MX} \Leftrightarrow$ $\mathrm{AR} \Leftrightarrow \mathrm{DR} \Leftrightarrow \mathrm{MU} \Leftrightarrow \mathrm{Q}$ (When the cursor located at 8 column) 3. ($\Leftrightarrow A \Leftrightarrow \vee \Leftrightarrow P \Leftrightarrow($ (When the cursor located at 7 column, and the 8 column is set as Q , Y, M, N) 4. ($\Leftrightarrow P \Leftrightarrow(\quad$ (When the cursor located at 7 column, and the 8 column is set as $T)$
SEL , then \leftarrow / \rightarrow	Confirm the input data and move the cursor.
$\uparrow \downarrow \leftarrow \rightarrow$	Move the cursor.
DEL	Delete an instruction.
ESC	1. Cancel the Instruction or action under Edition. 2. Back to Main Menu after query the program (save program to flash).
OK	1. Confirm the data and automatically save, the cursor moves to next input position. 2. When the cursor is on Column 8, Press the button to automatically enter the function blocks and set the parameters (such as T/C...).
SEL+DEL	Delete a Line of Instruction.
SEL+ESC	Display the number of the Lines and operation state of SG2 (RUN/STOP).
SEL+个/ \downarrow	Skip up/ down every 4-line program.
SEL+OK	Insert a space line

Operation Sample: more detailed to see Appendix A: Keypad programming in Ladder mode.
© FUNCTION BLOCK program input
After into FUNCTION BLOCK, cursor flicker on "T", press "SEL" key, cursor will into edit mode.
This time if press "SEL" key continuously. Ladder function block display in sequence:
$\mathrm{T} \rightarrow \mathrm{C} \rightarrow \mathrm{R} \rightarrow \mathrm{G} \rightarrow \mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{P} \rightarrow \mathrm{S} \rightarrow \mathrm{AS} \rightarrow \mathrm{MD} \rightarrow \mathrm{PI} \rightarrow \mathrm{MX} \rightarrow \mathrm{AR} \rightarrow \mathrm{MU} \rightarrow \mathrm{T} \ldots$
This time if cursor flicker on "T", press " \uparrow / \downarrow ". Ladder function block display in sequence:
$\mathrm{T} \leftrightarrow \mathrm{C} \leftrightarrow \mathrm{R} \leftrightarrow \mathrm{G} \leftrightarrow \mathrm{H} \leftrightarrow \mathrm{L} \leftrightarrow \mathrm{P} \leftrightarrow \mathrm{S} \leftrightarrow \mathrm{AS} \leftrightarrow \mathrm{MD} \leftrightarrow \mathrm{PI} \leftrightarrow \mathrm{MX} \leftrightarrow \mathrm{AR} \leftrightarrow \mathrm{MU} \leftrightarrow \mathrm{T} \ldots$

Function PI and AR, more key display:

Operation Sample: more detailed to see Appendix B: Keypad programming in Ladder FUNCTION BLOCK.

○PARAMETER

Under Ladder mode into PARAMETER, press "SEL" key, cursor will into edit mode.
This time if press "SEL" key continuously. Function blocks display in sequence:
$\mathrm{T} \rightarrow \mathrm{C} \rightarrow \mathrm{R} \rightarrow \mathrm{G} \rightarrow \mathrm{AS} \rightarrow \mathrm{MD} \rightarrow \mathrm{PI} \rightarrow \mathrm{MX} \rightarrow \mathrm{AR} \rightarrow \mathrm{MU} \rightarrow \mathrm{T} \ldots$
This time if cursor flicker on "T", press " \uparrow / \downarrow ". Function blocks display in sequence:
$\mathrm{T} \leftrightarrow \mathrm{C} \leftrightarrow \mathrm{R} \leftrightarrow \mathrm{G} \leftrightarrow \mathrm{AS} \leftrightarrow \mathrm{MD} \leftrightarrow \mathrm{PI} \leftrightarrow \mathrm{MX} \leftrightarrow \mathrm{AR} \leftrightarrow \mathrm{MU} \leftrightarrow \mathrm{T} \ldots$

$\mathrm{T}=00.00 \mathrm{Sec}$	$C=000000{ }^{\text {C01 }}$	R01 ON SU 00:00 OFF SU $00: 00$	$\begin{array}{ll} & G 01 \\ \mathrm{Ax}=\mathrm{A} 01 \mathrm{~V} & \\ \mathrm{Ax}=\mathrm{A} 02 \mathrm{~V} & \\ \mathrm{G}=00.00 \mathrm{~V} & \end{array}$	AS01 $V 1=00000$ $V 2=00000$ $V 3=00000$
MD01	PI01	MX01	AR01	MU01
$\mathrm{V} 1=00001$	$\mathrm{Kp}=00000$	$\mathrm{V} 1=00000$	$\mathrm{L} 1=00000$	$\mathrm{ID}=01$
$\mathrm{V} 2=00001$	$\mathrm{Ti}=00000$	$\mathrm{V} 2=00000$	L2 $=00000$	V1 $=0001$
$\mathrm{V} 3=00001$	$\mathrm{Td}=000.01 \mathrm{Sec} 1$	1	ML $=01000 \quad 1$	V2=DR01

Function PI and AR, more key display:

Under FBD mode, Press "SEL" key, Block which used in program displays in sequence.
© RUN or STOP
(1) RUN Mode
(2) STOP Mode

$\uparrow \quad \downarrow$	Move the cursor
OK	Execute the instruction, then back to main menu
ESC	Back to main menu

©DATA REGISTER

Displaying preset value when the smart is STOP status and displaying current value when the smart is RUN status.

$\uparrow \downarrow \leftarrow \rightarrow$	Move the cursor
OK	Ensure the edit
SEL	Enter edit (edit DR display number or DR preset value)
'SEL' then 'SEL'	Edit DR preset value type
'SEL’ then ‘ $\uparrow \downarrow$ '	1. Edit DR display number (only first line) 2. Edit DR preset value
ESC	1. Cancel edit. 2. Back to main menu (save DR preset data)
SEL $+\uparrow / \downarrow$	Tip-up/down page

© Other Menu Items
(1) CLEAR PROGRAM (Clear RAM, Program in flash and Password at the same time)
(2) WRITE: save the program (RAM) to PM05 (3rd) program spare cartridge
(3) READ: read the program from the PM05 or PM05 (3rd) program spare cartridge to SG2 (RAM)

| CLEAR PROG. |
| :--- | :--- |
| YES |
| $>N O$ |\quad| WERIT |
| :--- |
| YES |
| $>N O$ |\quad| READ |
| :---: |
| YES |
| |

(1) ~ (3) Now Press:

$\uparrow \quad \downarrow$	Move the cursor
OK	Execute the instruction
ESC	Back to main menu

(4) SET (system setting)

	content	default		
ID SET 01 REMOTE I/0 N BACKLIGHT x M KEEP v	ID SET	01	$\xrightarrow{\rightarrow}$	ID setting (00~99)
	REMOTE I/O	N		Remote I/O Mode (N : none M : Master S: Slave)
	BACK LIGHT	\times		Back light mode $(\sqrt{ }$: always light \times : light for 10 s after pressed.)
I/O NJMBER: 0 I/O ALARM v C KEEP x Z SET x	M KEEP	\checkmark	\rightarrow	M: non-Volatile (V :Volatile $\quad \times$: Non- Volatile)
	I/O NUMBER	0	\rightarrow	Setting expansion I/O module number (0~3)
	I/O ALARM	\checkmark	\rightarrow	Siren setting when is not available to Expansion I/O Points (\downarrow :Yes \times :No)
RS485 SET 03 DATA REG. U	C KEEP	\times	\rightarrow	in stop/run switching, Counter Present Value Keeping (V :Yes \times :No)
	Z SET	\times	\rightarrow	Enable or disable keypad input Z01-Z04 ($\sqrt{ }$:enable \times :disable)
	RS485 SET	03	\rightarrow	Setting the form and baud rate of RS-485
	DATA REG.	U	\rightarrow	Setting the Data Register type (U: 16bit-unsiged S: 16bit-sign)

※ M KEEP function is available for keeping M status and current value of T0E/T0F when power is re-supplied after loss.

Now Press:

$\uparrow \downarrow \leftarrow \rightarrow$	Move the cursor
SEL	Begin to edit.
'SEL' then ' \leftarrow / \rightarrow '	Move the cursor for 'ID SET' item and 'RS485 SET' item
'SEL' then ' \uparrow / \downarrow '	$\begin{aligned} & \text { 1. } \text { ID SET }=00 \sim 99 ; \text { I/O NUMBER }=0 \sim 3 \\ & \text { 2. } \text { REMOTE I/O }=\mathrm{N} \Leftrightarrow \mathrm{M} \Leftrightarrow \mathrm{~S} \Leftrightarrow \mathrm{~N} \\ & \text { 3. } \text { BACK LIGHT } ; \mathrm{C} \text { KEEP } ; \mathrm{Z} \mathrm{SET}=\times \Leftrightarrow \vee \\ & \text { 4. } \mathrm{M} \text { KEEP; } \mathrm{I} / \mathrm{O} \text { ALARM }=\sqrt{ } \Leftrightarrow \times \\ & \text { 5. } \text { RS485 SET }=(0 \sim 3)(0 \sim 5) \\ & \text { 6. } \text { DATA REG. }=\mathrm{U} \Leftrightarrow \mathrm{~S} \end{aligned}$
OK	Confirm the Edition Data
ESC	1. Cancel the setting when pressed 'SEL' 2. Back to Main Menu(save edit data)

※ When IO LINK is selected, ID setting range is $0 \sim 7$, which should be continuous.
ID=0 default as Master, $I D=1 \sim 7$ default as Slave.
※ When REMOTE I/O is selected, the distribution of the remote I/O is as follows:

	Master		Slave
Remote Input	X01~X0C	\leftarrow	I01~I0C
Remote Output	Y01~Y08	\rightarrow	Q01~Q08

※ The high bit of RS485 SET detects the form of RS-485, and the low bit detects the baud rate of RS-485.
More detailed to see chapter 7: 20 Points RS485 type Models Instruction.
(5) RTC SET

Now Press

$\uparrow \downarrow$	Enter RTC setting or Daylight saving setting				
SEL	Begin to input parameters				
'SEL' then ‘ $\leftarrow \rightarrow$ '	Move the Cursor				
'SEL' then ‘ \uparrow / \downarrow '	1. year $=00 \sim 99$, month=01~12, day=01~31 2. hour $=00 \sim 23, ~ m i n u t e ~$$=00 \sim 59$	$	$	'SEL' then 'SEL'	Daylight saving setting: NO - EUROPE - USA - OTHER - NO ...
:---	:---				
OK	Save the Input Data				
ESC	1. Cancel the Input Data when press 'SEL'. 2. Back to Main Menu.				

※ According to set the date automatically calculate weeks
※ RTC precision:

Temperature	Error
$+25^{\circ} \mathrm{C}$	$\pm 3 \mathrm{~s} /$ day
$-20^{\circ} \mathrm{C} /+50^{\circ} \mathrm{C}$	$\pm 6 \mathrm{~s} /$ day

RTC Daylight saving setting

There are 2 fixed Daylight saving options, EUROPE and USA, 1 editable Daylight saving option in SG2.
Daylight saving options can be set through the two methods as shown below.

1) PC Client

Edit rule: (1)M: Month range 1~12;
(2)D: Week range $0 \sim 5$, means the 0 to 5 th Sunday of the setting month and 0 said the last Sunday of the setting month;
(3)H: Hour range 1~22; summer hour and winter hour are the same.
2) Keypad

Then pressing " \rightarrow " selects edit location, pressing " \uparrow ", " \downarrow " edit content.

Example:
Year 2009, SUM M: 05 D: $01 \rightarrow$ 2009-5-3; M: 10 D: $00 \rightarrow 2009-10-25$.

(6) ANALOG SET

```
A01=GAIN :010
    OFFSET:+00
A02=GAIN :010
    OFFSET:+00
```

A 1=GAIN $: 010$	\rightarrow	GAIN (0~999), default 10
OFFSET $:+00$	\rightarrow	OFFSET (-50~+50), default 0
A 2=GAIN $: 010$		
OFFSET $:+00$		
A3~A8...Gain + Offset		

Now Press

$\uparrow \downarrow$	1. Move downward the Cursor 2. Switch the setting screen from A01/A02 $\rightarrow \quad$ A03/A04 \rightarrow A50/A06 $\quad \rightarrow$ A07/A08
SEL	Begin to input parameters
'SEL' then ‘ \leftarrow / \rightarrow '	Move the Cursor
'SEL' then ‘ \uparrow / \downarrow,	1. GAIN $=000 \sim 999$ 2. OFFSET=-50~+50
OK	Save the Input Data
ESC	1. Cancel the Input Data when press 'SEL'. 2. Back to Main Menu (save edit data).

※ V01 = A01*A01_GAIN + A01_OFFSET
V08 = A08*A08_GAIN + A08_OFFSET
(7) PASSWORD (setting password)

Now Press

SEL	1. Begin to input numeral 2. When the password is ON, it will not display 0000, but ${ }^{* * * *}$.
'SEL' then ' \leftarrow / \rightarrow '	Move the cursor
'SEL' then ‘ $\uparrow / \downarrow '$	Data changed $0 \sim$ F
OK	Save the input data, not 0000 or FFFF, as the PASSWORD is ON.
ESC	1. Cancel the Input Data when press 'SEL'. 2. Back to Main Menu.

※ A Class: Password number is set to 0001~9FFF.
B Class: Password number is set to A000~FFFE.
Password number $=0000$ or FFFF is disabled Password function, Default setting: 0000.

If there are H coils(HMI coils) enable, A / B Class password have same access right; If there are no H coils enable, A/B password have different access right. A/B Class password Description:

	No H coil ON		H coil ON	
Menu	A Class	B Class	A Class	B Class
LADDER	\checkmark	\checkmark		
FUN.BLOCK	\checkmark	\checkmark		
FBD	\checkmark	\checkmark		
PARAMETER		\checkmark		
RUN/STOP		\checkmark		
DATA REGISTER		\checkmark		
CLEAR PROG.	\checkmark	\checkmark		
WRITE	\checkmark	\checkmark		
READ	\checkmark	\checkmark		
SET		\checkmark		
RTC SET		※		
ANALOG SET		\checkmark		
LANGUAGE		\checkmark		
INITIAL	\checkmark	\checkmark		

$\sqrt{ }$: cannot accessed under password protecting
※:SEL+OK to enter RTC SET
（8）LANGUAGE（Selection menu language）

ENGLISH		\rightarrow	English
FRANCAIS		\rightarrow	French
ESPANNOL		\rightarrow	Spanish
ITALIANO		\rightarrow	Italian
DEUTSCH		\rightarrow	German
PORTUGUES		\rightarrow	Portuguese
＞简体中文	\checkmark	\rightarrow	Simplified Chinese
POLSKI		\rightarrow	Polish
ТУССКИЙ	＊	\rightarrow	Russian
TÜRKÇE		\rightarrow	Turkish

Now Press

$\uparrow \downarrow$	Vertically move the Cursor
OK	Select the language the cursor located
ESC	Back to Main Menu

※ Language display＂$\sqrt{ }$＂means current selection for menu language；
※ Language display＂＊＂means current selection for HMI multi－language characters，only Russian or Turkish；
※ Press key＂\uparrow＂or＂\downarrow＂to move cursor and press OK key to select language，if select Russian or Turkish，HMI multi－language characters also changed；if select other language，HMI multi－language characters don＇t changed．
（9）INITIAL（select Ladder Logic or Function Block Diagram（FBD）programming enviroment）

INITIAL
 FADDER FBD

Now Press：

$\uparrow \downarrow$	Vertically move the Cursor
OK	Select the mode the cursor located
ESC	Back to Main Menu

SG2 system error

After power on, SG2 keep detecting the running state. Once system error occurred, the error code will display on LCD. At the same time, SG2 will stop or just give error-warning base on the error type. Error types are show in the table below:

Error code	Explain	Error action	Why and How
ROM ERROR	System ROM/Flash memory check error	SG2 STOP	If the version of the firmware is older than 3.4, update to 3.4 or newer, then if the error occurs again, contact with suppliers
Vpd ERROR	Power down circuits check error	SG2 STOP	Voltage is too low; apply the appropriate voltage
PROG ERROR	Ladder / FBD code invalid in EEPROM.	SG2 STOP	Download the user program and try again.
LOGIC ERROR	FBD code logic check error	SG2 STOP	There is same logic error in the user program, modify it and try again.
EXT. ERROR	Expansion I/O error (When disable I/O alarm in "SET" of the main function, The alarm cannot appear.)	SG2 STOP	Extend module set number is not same with the actual number, check the system set.
COMM ERROR	RS485 type communication error	Warning only	V type module communication error, check the COMM protocol.
RTC ERROR	RTC check or work error	Warning only	Contact with suppliers.
EMPTY PACK	Memory pack is empty, when reading from the memory pack.	Warning only	No memory pack or there is no user program in the memory pack, check the memory pack.
MEM.ERROR	Memory packs check error, when writing to the memory pack.	Warning only	Memory pack is broken or no memory pack, check or change it.
T.ERROR	The type is not matching when reading program from the memory pack.	Warning only	The type of the user program in the memory pack does not match with current one.

Chapter 4: Parameter passing

SG2 inner data type 61
Passing parameter out of range 63

In SG2, almost all the function block can use other function block's current value as its preset value. This process we called data transmission. This chapter will describe some regulation about data transmission.

SG2 inner data type

All the data stored in SG2 inner system are integer. Even through some parameter likes "A01 $=9.99 \mathrm{~V}$ " display in LED, in fact "9.99" stored in SG2 inner system is "999". Only in display stage, the decimal point of " 9.99 " added according to its physical significance. When analog variable and other function block current value passed to other function block or analog output as preset value, essentially just integers passed. When need to display those passed integer preset value in LED, decimal point will be added according to physical significance.

Example1:

A05 current value passing to other function block as preset value:
When A05=2.34V, A05's inner value 234 is passed to other function block as preset value. Passing to AQ01 automatically as 2.34 V , Passing to B001 (G01) automatically as 2.34 V , Passing to B002(T01 time base is 0.01 s) automatically as 2.34 s , Passing to B 003 (T02 time base is 0.1 s) automatically as 23.4s, Passing to B004(T03 time base is 1s) automatically as 234s, Passing to B005(C01) automatically as 234:

Example2:
MD01 current value passing to other function block as preset value:
When $B 006(M D 01)=430$, MD01's inner value 430 is passed to other function block as preset value. Passing to AQ01 automatically as 4.30 V , Passing to B001(G01) automatically as 4.30, Passing to B002(T01 time base is 0.01s) automatically as 4.30s, Passing to B003(T02 time base is 0.1 s) automatically as 43.0 s, Passing to B004(T03 time base is 1 s) automatically as 430 s, Passing to B005(C01) automatically as 430:

Passing parameter out of range

MD current value data range is $-32768 \sim 32767$, T preset value data range is $0 \sim 9999$. If MD current value is passed to T as preset value, obviously sometimes MD current may greater T preset value upper limit, or less than T preset value down limit. This moment SG2 will use upper limit or down limit value as its preset value. Similar situation of passing parameter, SG2 will use the same processing method.

Example1:

When B006(MD01)=30000, MD01's value 30000 is passed to other function block as preset value. Passing to B002(T01 time base is 0.01 s) as preset value. 30000 is greater than upper limit of T01 9999, so automatically as 99.99;

Passing to B003(C01) as preset value. The number 30000 is not out of data range of C01, so C01 preset value automatically as 30000 ;

Passing to B004(AR01) as preset value. The number 30000 is greater than upper limit of AR01 20000, so automatically as 20000;

Example2:
When AT01=-100.0, AT01's inner value -1000 is passed to other function block as preset value. Passing to B 002 (T01 time base is 0.01 s) as preset value. -1000 is less than lower limit of T01 0, so automatically as 00.00 ;

Passing to $\mathrm{B} 003(\mathrm{C} 01)$ as preset value. -1000 is less than lower limit of C 01 , so C 01 preset value automatically as 0 ;

Passing to B004(AR01) as preset value. -1000 is not out of data range of AR01-10000, so automatically as -1000 ;

Chapter 5: Relay Ladder Logic Programming

Basic Elements 66
Specialty Elements 69
Output Instructions 70
Analog Elements 71
Timer Instruction 72
Counter Instructions 80
Real Time Clock (RTC) Instructions 90
Comparator Instructions 98
HMI Display Instructions 100
PWM Output Instruction (DC Transistor Output Models Only) 103
IO Link/Remote I/O Instruction (SG2-20Vxxx model only) 106
MU (Modbus) (SG2-20Vxxx model only) 109
SHIFT (shift output) 116
AQ (Analog Output) 117
AS (Add-Subtract) 119
MD (MUL-DIV) 120
PID (Proportion- Integral- Differential) 121
MX (Multiplexer) 125
AR (Analog-Ramp) 126
DR (Data register) 130

Basic Elements

	General output	SET output	RESET output	PULSE output	N.O. contact	N.C. contact	Number
Symbol	[A	V	P	-F	-7	(N.O./N.C.)
Digital Input					I	i	12(I01-I0C/i01-i0C)
Keypad Input					Z	z	4(Z01-Z04/z01-z04)
Digital Output	Q	Q	Q	Q	Q	q	8(Q01-Q08/q01-q08)
Auxiliary Coil	M	M	M	M	M	m	63(M01-M3F/m01-m3F)
Auxiliary Coil	N	N	N	N	N	n	63 (N01-N3F/n01-n3F)
Counter	C				C	c	31(C01-C1F/c01-c1F)
Timer	T			T	T	t	31(T01-T1F/t01-t1F)

Digital Inputs (I)

The SG2 digital input points are designated as I contacts. The number of digital input points is 6,8 or 12 depending on each SG2 model.

Keypad Inputs (Z)

The SG2 keypad input points are designated as Z contacts. The number of keypad input points is 4 which only exist on SG2 H type model and V type model.

Digital Outputs (Q)

The SG2 digital output points are designated as Q coils/contacts. The number of digital output points is 4 or 8 depending on each SG2 model. In this example, output point Q01 will be turned on when input point I01 is activated.

001

Auxiliary Coils (M)

Auxiliary Coils are the virtual coils inside the SG2 unit; they are not the real physically inputs or outputs that can be wired to any external devices, switches, sensors, etc. The number of Auxiliary Relays M is 63 . Since auxiliary relays are internal elements within the CPU, they can be programmed as digital inputs (contacts) or digital outputs (coils). In the first rung of this example, auxiliary relay M01 is being used as an output coil and will energize when input I02 turns on. In the second rung auxiliary relay M01 is being used as an input and when energized, will turn on outputs Q02 and Q03.

※ The state of auxiliary relays "M01~M3F" will be kept when the smart powers down if "M Keep" is active. "M Keep" can be set by the two ways below.

Special Auxiliary Relays: M31~M3F

Code	Signification	Description
M31	User program upstart flag	Outputting ON during the first scanning period; and used as normal auxiliary relay at other scan period.
M32	1second blinking output	0.5s ON, 0.5s OFF
M33	Summer/Winter output	Summer time turn ON, winter time turn OFF, used as normal auxiliary relay.
M34	AT01 flag	Output ON when the first channel of SG2-4PT is error
M35	AT02 flag	Output ON when the second channel of SG2-4PT is error
M36	AT03 flag	Output ON when the third channel of SG2-4PT is error
M37	AT04 flag	Output ON when the fourth channel of SG2-4PT is error
M38	RS485 received flag	Output ON when the RS485 port has received data.
M39	RS232 received flag	Output ON when the RS232 port has received data.
M3A~M3C	Reserved	
M3D	Received flag	MODBUS function using
M3E	Error flag	Time out flag
M3F	(MU instruction)	

Auxiliary Coils (N)

The function of auxiliary coils, N , is the same as auxiliary coils M , but it can't be kept when the smart powers down. In the first rung of this example, auxiliary relay N01 is being used as an output coil and will be energized when input I03 turns on. In the second rung auxiliary relay N01 is being used as an input, and outputs Q04 and Q05 will be turned ON once N01 is conducted.

Timer Elements (T)

Timer coil provides the relationship between its current value and the preset value of a selected timer. The timer contacts will turn on when the current value is equal or greater than the preset value of a selected timer. In this example, when input 103 turns on, timer T01 will start. When the timer reaches the preset of 5 seconds, timer status contact T01 turns on. When T01 turns on, output Q04 will turn on. Turning off I03 will reset the Timer.

Counters Elements (C)

Counter coil provides the relationship between its current value and the preset value of a selected counter. The counter contact will turn on when the current value is equal or greater than the preset value of a selected counter. In this example, each time the input contact I04 changes its state from off to on, the counter (C01) increments by one. When the counter value reaches the preset value, 2, the counter status contact C01 turns on. When C01 turns on, output Q05 will turn on. When M02 turns on counter C01 will reset. If M09 is turned on, the counter will change from a count-up to a count-down counter.

Specialty Elements

	General output	$\begin{gathered} \text { SET } \\ \text { output } \end{gathered}$	$\begin{aligned} & \hline \text { RESET } \\ & \text { output } \end{aligned}$	PULSE output	N.O. contact	N.C. contact	Number
Symbol	[A	\checkmark	P	-F	$\sqrt{-}$	(N.O./N.C.)
					Lo	Hi	Used in function block
Expansion input coil					X	x	12(X01-X0C/x01-x0C)
Expansion output coil	Y	Y	Y	Y	Y	y	12(Y01-Y0C/y01-y0C)
Edge trigger (pulse output)					D	d	
RTC	R				R	r	31(R01-R1F/r01-r1F)
Analog comparator	G				G	g	31(G01-G1F/g01-g1F)
HMI	H						31(H01-H1F)
PWM	P						2(P01-P02)
IO LINK	L						8(L01-L08)
SHIFT	S						1(S01)

Positive Edge Trigger - Pulse Output (D)

A positive edge trigger (D) holds its status ON for one CPU scan time when the preceding series contact changes its state from OFF to ON. The transition from OFF to ON is called the "Positive Edge Trigger".

Negative Edge Trigger - Pulse Output (d)

A negative edge trigger (d) holds its status ON for one CPU scan time when the preceding series contact changes its state from ON to OFF. The transition from ON to OFF is called the "Negative Edge Trigger".

Output Instructions

Set Output Instruction (Latch) (A)

A set output instruction, or Latch, turns ON an output coil (Q) or an auxiliary contact (M) when the preceding input contact turns from OFF to ON. Once the output is ON or set, it will remain ON until it is reset using the "Reset output" instruction. It is not necessary to retain the input contact at ON state once the output is at ON state.

Reset Output Instruction (Unlatch) (\vee)

A reset output instruction, or Unlatch, turns OFF a previous set output coil (Q) or an auxiliary contact (M) when the preceding input contact transitions from OFF to ON. Once the output is OFF or reset, it will remain OFF until it be "Set" again.

Pulse Output Instruction (Flip-Flop) (P)
Flip-Flop changes the ON/OFF state of the coil (Q) or an auxiliary contact (M) when the preceding input contact turns from OFF to ON. Once the output is ON, it will remain ON until the next time the preceding input contact turns from OFF to ON. In the example below, when Pushbutton I03 is pressed and released coil, Q04, it will turn on and remain on. When Pushbutton I03 is pressed again, coil Q04 will turn off and remain off.

Analog Elements

	Analog input	Analog output	number
Analog input	A		8 (A01~A08)
Analog input parameter	V		8 (V01~V08)
Temperature input	AT		4 (AT01~AT04)
Analog output		AQ	4 (AQ01~AQ04)
Add-Subtract control	AS	AS	31 (AS01~AS1F)
Multiply-Divide control	MD	MD	31 (MD01~MD1F)
PID control	PID	PID	15 (PI01~PI0F)
Data Multiplexer control	MX	MX	15 (MX01~MX0F)
Analog Ramp control	AR	AR	15 (AR01~AR0F)
Data Register	DR	DR	240 (DR01~DRF0)
MODBUS			15 (MU01~MU0F)

Analog value (A01~A08, V01~V08, AT01~AT04, AQ01~AQ04) and current value of functions (T01~T1F, C01~C1F, AS01~AS1F, MD01~MD1F, PI01~PI0F, MX01~MX0F, AR01~AR0F, and DR01~DRF0) can be used as other function's preset value. And the parameter preset value is its limit value when the current value of those functions is bigger or less than parameter's limit value.

Timer Instruction

The SG2 includes 31 Timer coils that can be used throughout a program. T0E and T0F keep their current value after power lost if "M Keep" is active, but the other Timers’ current value is non-retentive. Each Timer has a choice of 8 operation modes, 1 for a pulse Timer and 7 for general purpose Timer. Additionally, each Timer has 6 parameters for proper configuration. The table below describes each configuration parameter and lists each compatible element for configuring Timers.

Symbol	Description
(1)	Timer Mode (0-7)
(2)	Timer Unit 1: 0.01 s , range: $0.00-99.99 \mathrm{sec}$ 2: 0.1 s , range: $0.0-999.9 \mathrm{sec}$ 3: 1s, range: 0-9999 sec 4: 1min, range: 0-9999 min
(3)	ON: the Timer reset to 0 OFF: the Timer continues timing
(4)	Timer current value
(5)	Timer preset value
(6)	Timer code(T01~T1F total: 31 Timers)

Compatible Instructions	Range
Input	I01-I0C/i01-i0C
Keypad input	Z01-Z04/z01-z04
Output	Q01-Q08/q01-q08
Auxiliary coil	M01-M3F/m01-m3F
Auxiliary coil	N01-N3F/n01-n3F
Expansion input	X01-X0C/x01-x0C
Expansion output	Y01-Y0C/y01-y0C
RTC	R01-R1F/r01-r1F
Counter	C01-C1F/c01-c1F
Timer	T01-T1F/t01-t1F
Analog comparator	G01-G1F/g01-g1F
Normal open contact	Lo

※ The preset value of Timer could be a constant or other function current value.
※ The current value of T0E and T0F will be kept when SG2 on a loss of power if the "M-Keep" is active.

Timer Mode 0 (Internal Coil)

Mode 0 Timer (Internal Coil) used as internal auxiliary coils. No timer preset value. The status of T coil becomes with enable coil as shown below.

※ I01 is enable coil.

Timer Mode 1 (ON-Delay)

Mode 1 Timer (ON-Delay) will time up to a fixed value and stop timing when the current time is equal to the preset value. Additionally, the Timer current value will reset to zero when Timer is disabled. In the example below, the timer will stop timing when it reaches the preset value of 5 seconds. Timer contact T 01 will be ON when the current value is 5 .

※ T0E and T0F keep their current value after a loss of power to the smart relay if "M Keep" is active, but the others' reset to 0 .

Timer Mode 2 (ON-Delay with Reset)

Mode 2 Timer is an ON-Delay with reset that will time up to a fixed preset value and stop timing when the current time is equal to the preset value. Additionally, the Timer current value will be kept when Timer is disabled. In the example below, the Timer will stop timing when it reaches its preset value of 5 seconds. Timer status bit T 01 will be ON when the current value is 5 . The timer reset input is input I01. The timer current value will reset to 0 , and Timer status bit T01 will turn off when I 01 is ON.

※ T0E and T0F keep their current value after a loss of power to the smart relay if "M Keep" is active, but the others' reset to 0 .

Timer Mode 3 (OFF-Delay)

Mode 3 Timer is an OFF-Delay with reset that will time up to a fixed preset value and stop timing when the current time is equal to the preset value. Additionally, the Timer current value will reset to zero when Timer is disabled. In the example below, the timer reset input is Input I01.Timer status bit T01 will be ON immediately when its rung is true. The timer will only begin timing up when its rung changes to false. Timer status bit T01 will turn OFF when the current time value reaches its preset value of 10 seconds.

※ T0E and T0F keep their current value after a loss of power to the smart relay if "M Keep" is active, but the others' reset to 0 .

Timer Mode 4 (OFF-Delay)

Mode 4 Timer is an OFF-Delay with reset that will time up to a fixed preset value and stop timing when the current time is equal to the preset value. Additionally, the Timer current value will reset to zero when Timer is disabled. In the example below, the timer reset input is Input I01. The timer status bit T01 will turn ON only after its rung transitions from true to false. Timer status bit T01 will turn OFF when the current time value reaches its preset value of 10 seconds.

Edit Contact/Coil

Function
Mode $4 \rightarrow(0 \sim 6:-[, 7: P)$
Off-delay timer mode 2
 enable reset relay present value $=0$
enable reset relay
present value $=0$

Timig enable relay \qquad ON
OFF

※ T0E and T0F keep their current value after a loss of power to the smart relay if "M Keep" is active, but the others' reset to 0 .

Timer Mode 5 (FLASH without reset)

Mode 5 Timer is a Flash timer without reset that will time up to a fixed preset value and then change the state of its status bit. Additionally, the Timer current value will reset to zero when Timer is disabled. In the example below, timer status bit T01 will be ON immediately when its rung is true and begin its timing sequence. Timer status bit T01 will turn OFF when the current time value reaches its preset of 10 seconds. This Flash sequence of the Timer status bit T01 will continue as long as its rung remains true.

※ The current value of Timer can not be kept on a loss of power to smart.

Timer Mode 6 (FLASH with Reset)

Mode 6 Timer is a Flash timer with reset that will time up to a fixed preset value and then change the state of its status bit. Additionally, the Timer current value will reset to zero when Timer is disabled. In the example below, the timer reset input is Input I01. Timer status bit T01will be ON immediately when its rung is true and begin its timing sequence. Timer status bit T01 will turn OFF when the current time value reaches its preset of 10 seconds. This Flash sequence of the timer status bit T 01 will continue as long as the reset input signal does not be triggered.

Edit Contact/Coil

Flash timer mode 2

OK
Cancel
enable reset relay
present value $=0$$\rightarrow$ Timer starts operating \rightarrow enable reset relay

enable reset relay

$\mathrm{t}=$ preset value
※ The current value of Timer can not be kept on a loss of power to smart.

Timer Mode 7 (FLASH Cascade without Reset)

Mode 7 Timer is a Flash Timer which using two Timers in a cascade configuration without reset. The second Timer number follows the first Timer. The cascade configuration connects the timer status bit of first timer to enable the second timer. The second timer will time up to its preset value then flash and its timer status bit will enable the first timer. Additionally, the Timer current value will reset to zero when Timer is disabled. In the example below, timer status T 01 will be ON after it completes its timing sequence of 2.5 seconds. Timer 2 will then begin its timing sequence of 1 second. When the current time value of Timer 2 reaches its preset of 1 second, its status bit T02 will flash and Timer 1 will begin timing again. This type of cascade timer is of ten used in combination with a counter in applications where it is necessary to count the number of time cycles completed.
※Those two timers of Timer Mode 7 that cannot be double used as Timers for other modes in the same program.

enable reset relay present value $=0$

enable reset relay present value $=0$

※ The current value of Timer can not be kept on a loss of power to smart.

Counter Instructions

The SG2 includes 31 counters that can be used throughout a program. Each counter has a choice of 9 operation modes, 1 for pulse counter, 6 for general purpose counting and 2 for high speed counting. Additionally, each counter has 6 parameters for proper configuration. The tables below describe each configuration parameter and lists each compatible memory type for configuring counters.

Common Counter

Symbol	description
(1)	Counting Mode (0-6)
(2)	Use (I01~g1F) to set counting up or down OFF: counting up (0, 1, 2, 3......) ON: counting down (.....3, 2, 1, 0)
(3)	Use (I01~g1F) to reset the counting value ON: the counter value reset to 0 OFF: the counter continues to count
(4)	Counter current Value, range: 0~999999
(5)	Counter preset Value, range: 0~999999
6	Counter Code (C01~C1F total: 31 Counters)

Compatible Instructions	Range
Input	I01-I0C/i01-i0C
Keypad input	Z01-Z04/z01-z04
Output	Q01-Q08/q01-q08
Auxiliary coil	M01-M3F/m01-m3F
Auxiliary coil	N01-N3F/n01-n3F
Expansion input	X01-X0C/x01-x0C
Expansion output	Y01-Y0C/y01-y0C
RTC	R01-R1F/r01-r1F
Counter	C01-C1F/c01-c1F
Timer	T01-T1F/t01-t1F
Analog comparator	G01-F1F/g01-g1F
Normal open contact	Lo

※ The preset value of Counter could be a constant or other function current value.

Counter Mode 0 (Internal coil)

Mode 0 Counter (Internal Coil) used as internal auxiliary coils. No counter preset value. In the example below shows the relationship among the numbered block diagram for a mode 0 counter, the ladder diagram view, and the software Edit Contact/Coil dialog box.

Counter Mode 1 (Non-Overtake, Non-Retentive)

Mode 1 Counter will count up to a fixed preset value and stop counting when the current count is equal to the preset value, or count down to 0 and stop counting when the current count is equal to 0 . Additionally, the current count value is non-retentive and will reset to zero or preset value when restart the SG2 unit or change the Run/Stop mode, reset to zero or preset value depends on the counting direction. In the example below, the counter will stop counting when it reaches the preset value of 20. Counter status bit C01 will be ON when the current value is 20 .

※ Under this mode, the counter current value will be init value when the smart is power up or switching between RUN and STOP. The initial value equals to zero if the counter is in counting-up mode, but the preset value in counting-down mode.

Counter Mode 2 (Overtaking, Non-Retentive)

Mode 2 Counter will count up to a fixed preset value and continue counting even reach the preset value, but it won't count when the current value equals 0 in counting-down mode. Additionally, the current count value is non-retentive and will reset to init value on a powering up to the smart relay or switching between RUN and STOP. In the example below, the counter will continuously count when reach its preset value of 20 . Counter status bit C 01 will be ON when the current value is 20 .

※ Under this mode, Counter will continue counting after reaching preset value if it’s configured as counting-up mode. But it stops counting when its current value is 0 if it's configured as counting-down mode.
※ The counter current value will be init value when the smart's status switches between RUN and STOP or the smart
is power up. The initial value equals to zero if the counter is in counting-up mode, but the preset value in counting-down mode.

Counter Mode 3 (Non-Overtaking, Retentive)

Mode 3 Counter operation is similar to Mode 1 except its current count value is retentive when restart the power. Mode 3 Counter will count up to a fixed preset value and stop counting at that value, or stop counting when its current value is 0 if it's configured as counting-down mode. Additionally, the current count value is retentive when the smart switches between RUN and STOP if "C Keep" is active. In the example below, the counter will stop counting when it reaches the preset value of 20. Counter status bit C01 will be ON when the current value is 20 .

This mode is similar to mode 1 , but:
※ The current value will be kept when SG2 is in "Run" mode once the power is lost.
※ The current counter value will be kept when the SG2 is switched between RUN and STOP if C-keep is active.

Counter Mode 4 (Overtaking, Retentive)

Mode 4 Counter operation is similar to Mode 2 except its current count value is retentive. The current count value is retentive and will keep its current count after power lost. Mode 4 Counter will count up to a fixed preset value and then continue counting after the preset value, but it won't count when the current value equals 0 if it's configured as counting-down mode . Additionally, the current count value is retentive when the smart switches between RUN and STOP if "C Keep" is active In the example below, the counter will continue counting after its preset value of 20 . Counter status bit C 01 will be ON when the current value isn't less than 20

This mode is similar to mode 2, but:
※ The current counter value will be kept when SG2 is in "Run" mode once the power is lost
※ The current counter value will be kept when the SG2 is switched between RUN and STOP if "C-keep" is active.

Counter Mode 5 (Overtaking, Up-Down Count, Non-Retentive)

Mode 5 Counter's operation is similar to Mode 2, overtaking and non-retentive. Its status bit will be ON when the counter current value isn't less than its preset value, and will be OFF when the current value is less than its preset value.

The Mode 5 Counter will count up to a fixed preset value and continue counting even reach the preset value. Additionally, the current count value is non-retentive and will reset to 0 when power lost. Additionally, the Mode 5 counter is always reset to zero, and the current value also is always 0 when the smart switches between RUN and STOP unrelated to the state of its direction bit. In the example below, the counter will continue counting after its preset value of 20. Counter status bit C01 will be ON when the current value is 20 .

※ Under this mode, the count will continuous after reaching its preset value;
※ The current value is always 0 regardless of the state of its direction bit when the reset is availability;
※ The current value is always 0 regardless of the state of its direction bit when the smart switches between RUN and STOP.

Counter Mode 6 (Overtaking, Up-Down Count, Retentive)

Mode 6 Counter's operation is similar to Mode 4, its current count value is overtaking and retentive. Its status bit will be ON when the counter current value isn't less than its preset value, and will be OFF when the current value is less than its preset value. Additionally, the Mode 6 counter is always reset to zero, regardless of the state of its direction bit. The current count value is retentive and will keep its current count after power lost. And Counter will keep current value if "C Keep" is active. In the example below, the counter will continue counting after its preset value of 20 . Counter status bit C 01 will be ON when the current value isn't less than 20 .

This mode is similar to mode 5 , but:
※ The current value is kept when power lost in Run mode.
※ The current value is kept when change the mode between RUN and STOP if "C Keep" is active.

High Speed Counters (DC Version Only)

The DC powered version smart relays include two 1 KHz high speed inputs on terminal I01 and I02. These can be used as general purpose DC inputs or can be wired to a high speed input device (encoder, etc.) when configured for high speed counting.

High Speed Counter Mode 7 (DC powered versions only)

The Mode 7 High Speed Counter can use either input terminals I 01 or I 02 for forward up-counting to 1 KHz maximum at 24VDC high speed input signal. The selected Counter Coil (C01-C1F) will turn ON when the pulse count reaches preset value and remain ON. The counter will reset when the Reset Input is active. In the example below shows the relationship among the numbered block diagram for a Mode 7 Counter, the ladder diagram view, and the software Edit Contact/Coil

Symbol	Description
(1)	Counting Mode (7) high speed counting
(2)	High speed counting input terminal: I01 or I02 only
(3)	Use (I01~g1F) to Reset the counting value ON: the counter reset to 0 OFF: the counter continues to count
(4)	Current Count Value, range: 0~999999
(5)	Preset Value, range: 0~999999
(6)	Counter Coil Number (C01~C1F total: 31 counters)

Example: Q01 output ON with C01, and Q02 output ON with scan time.

Scan time

High Speed Counter Mode 8 (DC powered versions only)

The Mode 8 High Speed Counter can use either input terminals I01 or I02 for forward up-counting to 1 KHz maximum at 24VDC high speed input signal. It will reflash its counted value in each "fixed time". When the counted value reaches or excesses the "Preset ON", then the selected counter coil turns ON at the next cycle. If the counted value change to a value less than "Preset ON" but still large than

Symbol	Description
(1)	Counting Mode (8) high speed counting
(2)	High speed counting input terminal: I01 or I02 only
(3)	Counting interval time: 0~99.99 sec
(4)	Counter 'on’ preset Value, range: 0~999999
(5)	Counter 'off' preset Value, range: 0~999999
(6)	Counter Coil Number (C01~C1F total: 31 counters)

(1) $=8$

OFF
ON
OFF

Real Time Clock (RTC) Instructions

The SG2 smart relay includes 31 RTC coils that can be used throughout a program. Each RTC instruction has a choice of 5 operation modes, and has 10 parameters for proper configuration. The initial clock/calendar setting for each connected SG2 is set using the Operation»RTC Set menu selection from the SG2 Client software.

RTC SET V3.0
2009.06. 26

Fri. 10:11

Symbol	Description
1	Input the first week to RTC
2	Input the second week to RTC
(3)	RTC mode $0 \sim 2,0$: internal coil 1:daily, 2:consecutive days
4	RTC displays the hour of present time.
(5)	RTC displays the minute of present time
(6)	Set RTC hour ON
7	Set RTC Minute ON
8	Set RTC Hour OFF
(9)	Set RTC Minute OFF
(1)	RTC Coil Number (R01~R1F Total: 31 RTC)

RTC Mode 0 (Internal Coil)

Mode 0 RTC (Internal Coil) used as internal auxiliary coils. No preset value. In the example below shows the relationship among the numbered block diagram for a Mode 0 RTC, the ladder diagram view, and the software Edit Contact/Coil dialog box.

RTC Mode 1 (Daily)

The Daily Mode 1 allows the RTC coil acting based on a fixed time across a defined set of days per week. The configuration dialog below (example 1) allows setting the workdays per week (i.e. Mon-Fri) and the work hours per day. RTC coil/contact turns on in the work-hour of the workday.

Example 1:

Example 2:

Example 3:

Example 4:

(3)	1
(1) : (2)	FR-MO
(6) : (7)	$17: 00$
(8) : (9)	$8: 00$

Example 5:

(3)	1
(1) : (2)	SU-SU
(6) : (7)	$8: 00$
(3) : (9)	$17: 00$

Example 6:

(3)	1
(1) : (2)	SU-SU
(6) : (7)	$17: 00$
(8) : (9)	$8: 00$

RTC Mode 2 (Interval weekly)

The Interval Time Mode 2 allows the RTC coil acting based on time and day per week. The configuration dialog below (example 1) allows setting the start-working time and stop-working time between two days in each week.

Example 1:

Example 2:

Example 3:

(3)	2
(1) : (2)	WE-WE
(6) : (7)	$17: 00$
(3) : (9)	$8: 00$

Example 4:

(3)	2
(1) : (2)	WE-WE
(6) : (7)	$8: 00$
(3) : (9)	$17: 00$

RTC Mode 3 (Year-Month-Day)

The Year-Month-Day Mode 3 allows the RTC coil acting based on Year, Month, and Date. The configuration dialog below (example 1) allows setting the workday between two different dates.

Symbol	Description
(1)	RTC Year ON
(2)	RTC Year OFF
(3)	RTC Mode 3, Year-Month-Day
(4)	Display RTC present time, Year-Month-Day
(5)	RTC month ON
(6)	RTC day ON
(7)	RTC month OFF
(8)	RTC day OFF
(9)	RTC code (R01~R1F, total 31 group)

Example 1:

Year-Month-Day
Time
Time
ENABLE
-
-

RTC output

2009/02/17
0:00

2010/11/11

0:00

Example 2:

Example 3:

Year-Month-Day

(3)	3
$(1) /(5) /(6)$	$2010 / 11 / 11$
$(2) /(7) /(8)$	$2010 / 11 / 11$

Time
ENABLE
E
RTC output

2009/02/17
2010/11/11
\qquad

RTC Mode 4 (30-second compensator)

The 30 -second compensator, Mode 4, allows the RTC coil acting based on week, hour, minute and second. The configuration dialog below shows the setting of week, hour, minute and second for the TRC mode 4.

Symbol	Description
(1)	RTC adjustment week
(2)	RTC mode 4
(3)	RTC present hour
(4)	RTC present minute
(5)	RTC adjustment hour
(6)	RTC adjustment minute
(7)	RTC adjustment second
(8)	RTC code (R01~R1F, total 31 group)

Example 1: preset second <30 s

※ The current time will return to 8:00:00 when it achieves 8:00:20 at first time, and RTC contact, R01, will turn ON, then it does not turns OFF until the present time achieves 8:00:20 again. Then time keeps going. So, this means that RTC status bit is ON for 21 seconds.

Example 2: preset second >=30s

※ The present time will change to be 8:01:00 when it achieves 8:00:40, and RTC status bit R01 turns ON in one scan time. Then time keeps going and R01 turns OFF.

Comparator Instructions

The SG2 smart relay includes 31 comparator coils that can be used throughout a program. Each comparator has 8 different operation modes. Additionally, each comparator has 5 parameters for proper configuration. The table below describes each configured parameter, and lists each compatible element for configuring Comparators.

Symbol	Description
(1)	Comparison Mode (0~7)
(2)	Ax analog input value $(0.00 \sim 99.99)$
(3)	Ay analog input value $(0.00 \sim 99.99)$
(4)	Reference comparative value, could be constant, or other data code
(5)	Output terminal (G01~G1F)

※ The preset value (2), (3) and (4) can be a constant or refer to other function current value.

Comparator Mode 0 (Internal Coil)

Mode 0 Comparator (Internal Coil) used as internal auxiliary coils. No preset value. In the example below shows the relationship among the numbered block diagram for a Mode 0 Comparator, the ladder diagram view, and the software Edit Contact/Coil dialog box.

Analog comparator Mode 1~7

(1) Analog Comparator mode 1: $A y$ - (4) $\leq A x \leq A y+$ (4), (5) $O N$;
(2) Analog Comparator mode 2: $A x \leq A y$, (5) $O N$;
(3) Analog Comparator mode 3: $A x \geq A y$, (5) ON ;
(4) Analog Comparator mode 4: (4) $\geq A x$, (5) $O N$;
(5) Analog Comparator mode 5: (4) $\leq A x$, (5) $O N$;
(6) Analog Comparator mode 6: (4) $=A x$, (5)ON ;
(7) Analog Comparator mode 7: (4) $\neq A x$, (5) $O N$;

Example 1: Analog Signal Compare

In the example below, Mode 4 is the selected function that compares the value of analog input A01 to a constant value (N) of 2.50. Status coil G01 turns ON when A01 is not less than constant 2.50.

Example 2: Timer/Counter present value Compare

The Comparator instruction can be used to compare Timer, Counter, or other function values to a constant value or each other. In this example below, Mode 5 is the selected function that compares the value of Counter (C01) with the value of Timer (T01). Status coil G01 turns ON if present value of C01 isn't less than present value of T01.

HMI Display Instructions

The SG2 smart relay includes 31 HMI instructions that can be used throughout a program. Each HMI instruction can be configured to display information on the SG2 16×4 character LCD in text, numeric, or bit format for items such as current value and preset value for functions, Input/Output bit status, and text. There are three kinds of text in HMI, Multi Language, Chinese (fixed) and Chinese (edit). Each HMI instruction can be configured separately using the Edit>>HMI/Text menu selection from the SG2 Client software.

Allows the SEL button on the SG2 keypad to activate the selected message onto the LCD even the Hxx is inactive.
※More information about HMI/TEXT to see:

Chapter 3: Program Tools—Ladder Logic Programming Environment —HMI/TEXT.

H01~H14 can display the setting telephone number and send alarm message to the setting number by GSM module.

Each HMI instruction has a choice of 2 operation modes. The table below describes each configuration parameter.

Symbol	Description
(1)	Display mode (1-2)
(2)	HMI character output terminal (H01~H1F)

HMI function instruction

1. HMI can display character, built-in Chinese, user-defined Chinese and GSM telephone number. This information can not be edited through keypad.
2. HMI can display function current value (T, C, R, G and $D R$), analog input/output value (A, AT, AQ). This information can not be edited through keypad.
3. HMI can display preset value of function (T, C, R, G and DR). This information can be edited through keypad.
4. HMI display state of coil (I, X, Z, M and N), state of M and N can be edited through keypad.
5. Once more than one HMI enabled at the same time, press changing page button to display other HMI screen.
6. When another HMI is enabled, SG2 can auto-determine whether does HMI screen display the present page or change to the new HMI screen; it depends on the HMI code. For example, HMI keeps H01 screen as the present screen even though H02 coil be exercised.

Keypad instruction

SEL	Under status 1 or 2, go into status 3. Under status 3, go into status 4. Under status 4, change function preset type.
\uparrow or \downarrow	Under status 1, find the nearest HMI whose mode is 1. Under status 2, find the nearest enabled HMI. Under status 3, move cursor up or down. Under status 4, change data and number, function preset data; change coil state
(SEL $+\uparrow$ or $\downarrow)$	Under status 1, find the nearest HMI whose mode is 1. Under status 2, find the nearest enabled HMI. Under status 3, move cursor up or down.
\leftarrow or \rightarrow	Under status3 or 4, move cursor lift or right.
OK	Validate editing and store automatic.
ESC	Abrogate operation.

HMI status 1~4:

1. HMI scanning state, press SEL into HIM at IO interface

2. HMI running state, HMI is enabled at IO interface

3. HMI edit preparing state, press SEL when HMI is scanning or running state, flicker cursor will show if there is edited content.

4. HMI editing state, press SEL again under status 3.

PWM Output Instruction (DC Transistor Output Models Only)

The transistor output model, T type, includes the capability to provide a PWM (Pulse Width Modulation) output on terminal Q01 and Q02. The PWM instruction is able to output up to an 8-stage PWM waveform. It also provides a PLSY (Pulse output) output on terminal Q01, whose pulse number and frequency can be changed. The table below describes number and mode of PWM.

	Mode	Output
P01	PWM, PLSY	Q01
P02	PWM	Q02

PWM mode

P01 and P02 both can work under this mode. Each PWM has 8 group preset stages which contents Width and Period. The 8 group preset values can be constant or other function current value. Each PWM has 10 parameters for proper configuration. The table below describes each configuration parameter, and lists each compatible memory type for configuring PWM.

Symbol	Description
(1)	PWM mode (1)
(2)	present stages as operating (1~8)
(3)	Select1 (I01~g1F)
(4)	Select2 (101~g1F)
(5)	Select3 (I01~g1F)
(6)	present stages as operating (1~8)
(7)	Width of preset stage (2) (0~32767 ms)
(8)	Period of preset stage (2) (1~32767 ms)
(9)	Output port (Q01~Q02)
(11)	PWM code (P01~P02)

Enable	Select3	Select2	Select1	stage	PWM Output
OFF	X	X	X	0	OFF
ON	OFF	OFF	OFF	1	Preset stage 1
ON	OFF	OFF	ON	2	Preset stage 2
ON	OFF	ON	OFF	3	Preset stage 3
ON	OFF	ON	ON	4	Preset stage 4
ON	ON	OFF	OFF	5	Preset stage 5
ON	ON	OFF	ON	6	Preset stage 6
ON	ON	ON	OFF	7	Preset stage 7
ON	ON	ON	ON	8	Preset stage 8

Example:

The state of M01, M02 and M03 are OFF-ON-OFF, so that PWM output pulse is at stage3 like this as setting above.

The state of M01, M02 and M03 decide the duty cycle and frequency of PWM output. PWM stages can be changed by the status of M01, M02 and M03 when P01 is running. (6) displays the number of pulse when P01 is running, but (6) equals 0 when P01 is disabled.

PLSY mode

Only P01 can work under this mode, and the output is Q01. PLSY has 6 parameters for proper configuration. The table below describes the information of PLSY parameters.

Symbol	Description
(1)	PLSY mode (2)
(2)	Total number of pulse (storing in DRC9)
(3)	Preset frequency of PLSY (1~1000Hz)
(4)	Preset pulse number of PLSY(0~32767)
(5)	Output port (Q01)
(6)	PWM code (P01)

Example:

The preset frequency and pulse number could be constant or the current value of other function. They are variable if the preset are other data code. The PLSY will stop output if it has outputted the number of (4) pulse. PLSY will run again if it is enabled for a second time.
※ In the example above, the frequency refers to data code (C01). So the wave's frequency will change following the current value of C01.
※ In the example above, frequency is 1000 Hz if the current value of C 01 is bigger than 1000 Hz .
※ PLSY stops outputting pulse after it has output 100 pulses.
※ PLSY dose not stop sending the pulse out as long as (4) equal to 0 .

Example:

Parameter setting: (3) $=500 \mathrm{~Hz}$, (4) $=5$, output as shown below:

PLSY stops outputting when the number of output pulse is completed.

IO Link/Remote I/O Instruction (SG2-20Vxxx model only)

The SG2-20Vxxx models include the capability to link additional SG2-20Vxx units via the RS-485 connection terminals. The baud rate and communication format both can be set using the Operation»Module System Set... menu selection from the SG2 Client software. They also can be set through keypad like adjacent
 picture. The two bits of keypad how to decide the communication format and baud rate like describing below.

	Data	Meaning
High bit	0	8/N/2 Data 8bit, No Parity, 2 Stop bit.
	1	8/E/1 Data 8bit, Even Parity, 1 Stop bit.
	2	8/O/1 Data 8bit, Odd Parity, 1 Stop bit.
	3	8/N/1 Data 8bit, No Parity, 1 Stop bit.
Low bit	0	4800bps
	1	9600bps
	2	19200bps
	3	38400bps
	4	57600bps
	5	115200bps

IO Link

Up to 8 SG2 units can be linked together as the IO Link Network. Each unit runs their own logic program; the ON/OFF state of input, output points, and Auxiliary Coils in each one can be assigned to "W Table", see the next page for more information. There must be one master ($\mathrm{ID}=00$) and several slavers with the continuous ID number starting from 01 in the network. The master one does not perform the IO Link function to the units with the ID behind the first broken number once the ID numbers are not continuous. For example, the slavers' ID are 01, 02, 04 and 05 , the master just can recognize only two Slaver, ID 01 and 02 , the ID 04 and 05 will be skipped.

- max. 8 points I/O send per stations
- Max 7*8 (=56) points I/O received per station

ID must set to be $0,1,2, \ldots$ (max to 7)
Remote I/O disable

ID	Memory list location
0	$\mathrm{~W} 01 \sim \mathrm{~W} 08$
1	$\mathrm{~W} 09 \sim \mathrm{~W} 16$
2	$\mathrm{~W} 17 \sim \mathrm{~W} 24$
3	$\mathrm{~W} 25 \sim \mathrm{~W} 32$
4	$\mathrm{~W} 33 \sim \mathrm{~W} 40$
5	$\mathrm{~W} 41 \sim \mathrm{~W} 48$
6	$\mathrm{~W} 49 \sim \mathrm{~W} 56$
7	$\mathrm{~W} 57 \sim \mathrm{~W} 64$

※ One controller can use 8 IO Link (L01~L08). Only one IO Link instruction can work at Mode 1(Write mode),
and the other IO Link instructions must be Mode 2 (Grab mode).
The Mode 1: Write the ON/OFF states of the selected coils into the chosen W elements. The available W elements in the mode 1 depend on the ID setting of that unit, refer to the table in the previous page for more information.

The Mode 2: Grab the states of the selected W elements, and substituting the state of the selected coil. If the select coil type is input coil I or X, coil status can't be changed by the state of W elements.

Symbol	Description
(1)	Setting mode(1,2) 1:Writing 2:Grading
(2)	Number of send/receive points (1~8)
(3)	Chosen coil elements for Write/Grab mode
(4)	Selected W elements for Write/Grab mode
(5)	I/O link output terminal (L01~L08)

Type of points	Range
Inputs	$\mathrm{I} 01 \sim \mathrm{I} 0 \mathrm{C} / \mathrm{i} 01 \sim \mathrm{i} 0 \mathrm{C}$
Outputs	$\mathrm{Q} 01 \sim \mathrm{Q} 08 / \mathrm{q} 01 \sim \mathrm{q} 08$
Auxiliary coil	$\mathrm{M} 01 \sim \mathrm{M} 3 \mathrm{~F} / \mathrm{m} 01 \sim \mathrm{~m} 3 \mathrm{~F}$
Auxiliary coil	$\mathrm{N} 01 \sim \mathrm{~N} 3 \mathrm{~F} / \mathrm{n} 01 \sim \mathrm{n} 3 \mathrm{~F}$
Expansion inputs	$\mathrm{X} 01 \sim \mathrm{X} 0 \mathrm{C} / \mathrm{x} 01 \sim \mathrm{x} 0 \mathrm{C}$
Expansion outputs	$\mathrm{Y} 01 \sim \mathrm{Y} 0 \mathrm{C} / \mathrm{y} 01 \sim \mathrm{y} 0 \mathrm{C}$

Example 1: IO Link Mode 1
Set (1) $=1$, (2) $=5$, (3) $=\mathrm{I} 03 \sim \mathrm{I} 07$ and ID of this unit equal to 01 ; the state of terminals, $\mathrm{I} 03 \sim \mathrm{I} 07$, will be written into the corresponding W elements, W09~W13 as shown in below table.

(1) $=1,(2)=5,3^{3}=103 \sim 107, I D=1$ (4):W09~W13)								
Memory List Position	W09	W10	W11	W12	W13	W14	W15	W16
Corresponding receiving	4	4	4	4	4	4	4	4

| Or sending terminal | I03 | I04 | I05 | I06 | I07 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Example 2: IO Link Mode 2

Set (1) $=2$, (2) $=5,(3)=\mathrm{M} 03 \sim \mathrm{M} 07$ and (4) $=\mathrm{W} 17 \sim \mathrm{~W} 21$; when enabling the IO Link, the ON/OFF state of M03~M07 is controlled by the W17~W21.

(1) $=1$, (2) $=5$, (3)						
= M03~M07, (4):W17~W21						
Memory List Position	W17	W18	W19	W20	W21	
Corresponding receiving	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
Or sending terminal	M03	M04	M05	M06	M07	

Remote I/O

Remote IO function can make one SG2 as master link to another SG2 as slaver; the slaver can't perform its program. Below figures show how to configure the remote IO system.

Don't use expansion DI/DO modules, when remote I/O function is enabled.

MU (Modbus) (SG2-20Vxxx model only)

MU function performs Modbus RTU communication at RS485 port. There are 15 MU coils: MU01~MU0F.

Remote IO and IO Link have higher priority than MU to use RS485 port. MU is executed when the remote IO setting in the system is disabled (No Remote IO) and ID isn't 0 .

There can be several MU commands executed at the same time, but only one command can be performed, the rest are postponed until the performed one is accomplished.

Function mode corresponding communication function code:

mode	Communication function code
1	03 (read registers)
2	06 (write single register)
3	10 (write multiple registers)
4	01 (read coils)
5	05 (write single coil)

The coils used for MU function:

M3D: Received	M3D turns ON after received, then check-up for error. Transferring data to target address if there is no error.
M3E: Error flag	communication error flag
M3F: Time out flag	M3F turns ON when the master does not get any response from slaver within certain time. M3F will automatically reset if M3D reset.

The time of time out depends on the baud rate as shown in the below table.

Baud rate (bps)	Time out (ms)
$4800, ~ 9600, ~ 19200, ~ 38400$	125
57600	100
115200	80

There are 5 parameters in MU function as shown below.

| symbol | Description |
| :---: | :--- | :--- |
| (1) | MU mode (1~5) |
| (2) | ID number of the target unit: range from 0 to127 |

※ The max data length for Mode 1 and 3 is 25 words, it means 25 continuous addresses. The max data length for Mode 4 is 400bits.

MU mode1: Read Registers

Set parameter (3), address, to be constant: as show in below figure, the data length is fixed at 1 (it means read signal register only).

Address is a constant, 0003.
Data length is fixed at 1word, in other word, just one address.
The sending out Modbus command will be:
Received response form slaver:
010302 data1-1 data1-2 CRC16;
Saving date to DRE0:
DRE0 = data1-1 + data1-2
※ Note:
The completed data in a register is a 16 bits type. When using Modbus protocol, this 16 bits data is going to be divided into high 8 bits and low 8 bits. In above example:
Data1-1 is the high 8 bits
Data1-2 is the low 8 bits

Setting parameter (3), address refers to the value of DR register:

Function parameter display:

Setting DR03=0001 for the address
Setting DR04=0002 for the data length
(means how many data will be read)
The sending out Modbus command will be:
010300010002 CRC16;

Received response from slaver:
010304 data1-1 data1-2 data2-1 data2-2 CRC16;
Saving data to DRE0~DRE1:
DRE0 = data1-1 + data1-2
DRE1 = data2-1 + data2-2
※the max length of data is 25.
The above example shows how to read two data from two different (but continuous) registers/addresses. For more information, see the SG2 Modbus protocol manual.

MU mode2: Write single register

Set parameter (3), address, to be constant:

Function parameter display:

r2	1
\| 01	
\| 0003	FMU01
1 DRE0	」

Set a constant address as 0003,
Set DRE0=1234 (hex: 04D2) as the content which would be written into other register.

When enable the MU function, the sending out Modbus command will be

0106000304 D2 CRC16;

Received response from slaver:
0106000304 D2 CRC16;

Set parameter (3), address refers to data register DR:

Function parameter display:

Set DR03=0001 for data address
Set DRE0=1234 (hex: 04D2) as the content which would be written into other register.,
When enable the MU function, the sending out Modbus command will be

0106000104 D2 CRC16;

Received response from slaver:
0106000104 D2 CRC16;

MU mode3: Write Multiple Registers

Set parameter (3), address, to be constant:

Function parameter display:

[3	1
\| 01	1
\| 0003	FMU01
L DRE0	」

Set a constant address, 0003
Data length is fixed at 1word, means writing single register.
Set data DRE0=1234 (hex: 04D2) as the content which would be written into other register.
When enable the MU function, the sending out Modbus command will be

0110000300010204 D2 CRC16;

Received response from slaver:
011000030001 CRC16;

Set parameter (3), address, refer to data register DR:

Function parameter display:

Set DR03=0001 for address
Set DR04=0002 for data length
(means how many data will be written)
Set data DRE0=1234 (hex: 04D2),
Set data DRE1=5678 (hex: 162E),

When enable the MU function, the sending out Modbus command will be:

0110000100020404 D2 16 2E CRC16;

Received response from slaver:
011000010002 CRC16
※ the max length of data is 25 .

The above example shows how to write two data into two different (but continuous) registers/addresses. For more information, see the SG2 Modbus protocol manual.

MU mode4: Read Coils

Set parameter (3), address, to be constant:

Function parameter display:

Γ^{4}	1
\| 01	
\| 0020	FMU01
L DRE0	」

Set a constant address 20 (here is a Hex number)
Data length is a constant value: 10 in Hex format
When enable the MU function, the sending out Modbus command will be:
010100200010 CRC16;

Received response from slaver:
010102 data1-1 data1-2 CRC16;
Saving data to DRE0:
DRE0 = data1-1 + data1-2

Set parameter (3), address, refer to data register DR:

Function parameter display:

Set DR03=0001 for address
Set DR04=0015 (hex: 000F) for data length;
(means how many coil's state will be read)
When enable the MU function, the sending out Modbus command will be:

0101000100 0F CRC16;

Received response from slaver:
010102 data1-1 data1-2 CRC16;

Saving data to DRE0:
DRE0 = data1-1 + data1-2
※ the max length of data is 400 .

MU mode5: Write single coil

Set parameter (3), address to be constant:

Function parameter display:

Set a constant address as 0003
Set DRE0=65280 (hex: FF00) as the content which would be written into other coil.

When enable the MU function, the sending out Modbus command will be:
01050003 FF 00 CRC16;

Received response from slaver:
01050003 FF 00 CRC16;

Setting parameter (3), address, refer to data register DR:

Function parameter display:

Set DR03=0001 for address
Set DRE0=65280 (hex: FF00)
When enable the MU function, the sending out Modbus command will be:

01050001 FF 00 CRC16;

Received response from slaver:
01050001 FF 00 CRC16;

Example:
MU sending and receiving data via RS485 port when it's enabled. Here recommends user to put the D-trigger element in front of the MU coil.

MU01 and MU05 coils are controlled by T01 as shown in above figure. Set MU01 as mode1, read registers mode, address starts from DR11 $=14=0 \times 0 \mathrm{E}$, data length DR12=4, and saving data to the registers from DR01 to DR04.

Setting MU05 as mode3, write multiple registers mode, address DR13 $=14=0 \times 0 E$, data length $\operatorname{DR} 14=4$, and the data which want to write into target registers refer to the value of the register, from DR05 to DR08 (DR05=10000=0x2710,

DR06=8000=0x1F40,
DR07=6000=0x1770,
 DR08=4000=0x0FA0);

When T01 turns ON, MU01 is going to be triggered to send command 0103000 E 0004 CRC16, then saving the received data to DR01~DR04. After 0.2 s T01 OFF, then trigger MU05 sending command 0110000 E 000408 2710 1F 401770 0F A0 CRC16, writing 4 sets data to the registers ($0 \mathrm{x} 0 \mathrm{E} \sim 0 \mathrm{x} 11$) in the slaver.

SHIFT (shift output)

The SG2 smart relay includes only one SHIFT coil that can be used throughout a program. This function switches a set of serial coils sequentially by trigger a certain input pulse coil. It has 4 parameters for proper configuration. The table below describes each configured parameter, and lists each compatible element for configuring SHIFT.

Symbol	Description
(1)	Preset number of output pulse (1~8)
(2)	SHIFT input coil (I01~g1F)
(3)	SHIFT output coils (Q, Y, M, N)
(4)	SHIFT code (S01)

In the example below, (1) $=5,(2)=\mathrm{I} 01$, (3): Q03~Q07.

※ When shift function is enabled, the Q03 will auto-turn ON first, and the rest of the coils still retain the OFF state. The ON state shifts to Q4 once the input pulse coil was triggered, then Q03 turns OFF. When triggered signal happened again, the ON state shifts again from Q04 to Q05, and so on. See the above timing diagram for more information.

AQ (Analog Output)

The AQ instructions must be used with extension analog out module, 2AO.The default output signal of AQ is $0 \sim 10 \mathrm{~V}$, the AQ value and the corresponding 12 bits data value are in the range of $0 \sim 1000$ and $0 \sim 4095$. It also can be assigned to output $0 \sim 20 \mathrm{~mA}$, in current mode; the AQ value and the corresponding 12 bits data value are within the range of $0 \sim 500$ and $0 \sim 2047$. The 12bits data saved in DRD4~DRD7. The output mode of AQ is set by the current value of DRD0~DRD3

	Output register	Mode register
Channel 1: AQ01	DRD4	DRD0
Channel 2: AQ02	DRD5	DRD1
Channel 3: AQ03	DRD6	DRD2
Channel 4: AQ04	DRD7	DRD3

Mode	DRD0~DRD3 data definition
1	$0:$ voltage mode and reset value when stop;
2	$1:$ Current mode and reset value when stop;
3	$2:$ voltage mode and keep value when stop;
4	$3:$ Current mode and keep value when stop;

※ Analog output works in mode 1 if the value of the mode register, DRD0~DRD3, is larger than 3.
The appearance of $A Q$ value on the HMI screen
The HMI on SG2 displays the code of selected coil when SG2 at STOP mode, and showing the current value at RUN mode, see the below figure to get more information.

When AQ mode is in current mode, the relationship among the DR, AQ output and display value is shown as below:

DRD5=2047, AQ02=500, display: 20.00 mA
※ When the preset value in "Analog Output Set" screen is a constant, this value will be stored in DR register, (DRD4~DRD7) and the AQ value equals to (DRx/4.095). For example, CH1 is configured as mode 1, set a constant value, 4000, then the value of AQ01 will be 977, and HMI displays 9.77 V .
※ Once the preset value refers to other variable, its value is also stored in DR register, (DRD4~DRD7), but it will be equal to AQx * 4.095. ($\mathrm{DRx}=\mathrm{AQx} * 4.095$).
※ More information about expansion analog input to see: Chapter 8 Expansion Module-Analog Module.
Example 1: AQ01 preset value is a constant; the preset value of DRD4 refers to V01.

Run the program and don't conduct the M01 contact, DRD4 output value, now, equals to the constant preset value of AQ01, and AQ01 outputs 9.77 V .

Then enable the M01, the DRD4 output value is depending on the value of V01, changing the value of V01 also influences the output value of AQ01 and DRD4.

Example 2: AQ01 preset value refers to other parameters, and the preset value of DRD4 refers to V01.

Run the program, the current/output value of DRD4 will not be affected by V01 even the M01 turns ON, it only depends on the A01 (AQ01 * 4.095=DRD4).

AS (Add-Subtract)

The SG2 smart relay includes 31AS coils that can be used throughout a program. The AS function performs a simple integral-math-calculation: Addition and Subtraction. There are 6 parameters for proper configuration. The table below describes each configuration parameter, and lists each compatible element for configuring AS.

Symbol	Description
(1)	AS current value $(-32768 \sim 32767)$
(2)	V1 parameter $(-32768 \sim 32767)$
(3)	V2 parameter $(-32768 \sim 32767)$
(4)	V3 parameter $(-32768 \sim 32767)$
(5)	Error output coil (M, N, NOP)
(6)	AS code (AS01~AS1F)

Compute formula: $A S=V 1+V 2-V 3$
AS current value is the calculated result. Parameters V1, V2, and V3 can be a constant or current value of other function. The "Error Coil" turns ON when the calculated result is overflowed, the current value keeps at 32767 or -32768, which depends on the direction of the overflow. But it will do nothing if the output coil is NOP. The output coil will turns OFF when the result is in the range or the function is disabled.

The example below shows how to configure AS function.

※ Error output coil N01 will turn ON when the compute result is overflow.

MD (MUL-DIV)

The SG2 smart relay includes 31MD coils that can be used throughout a program. The MD function performs a simple integral-math-calculation, Multiplication and Division. There are 6 parameters for proper configuration. The table below describes each configuration parameter, and lists each compatible element for configuring MD.

Symbol	Description
(1)	MD current value ($-32768 \sim 32767)$
(2)	V1 parameter $(-32768 \sim 32767)$
(3)	V2 parameter $(-32768 \sim 32767)$
(4)	V3 parameter ($-32768 \sim 32767)$
(5)	Error output coil (M, N, NOP)
(6)	MD code (MD01~MD1F)

Compute formula: $M D=V 1 * V 2 / V 3$
MD current value is the calculated result. Parameters V1, V2, and V3 can be a constant or other function current value. The "Error Coil" turns ON when the calculated result is overflowed or V3 equals to zero. The current value keeps at 32767 or -32768 , which depends on the direction of the overflow, and keeps zero when V3 is zero. But it will do nothing if the output coil is NOP. The output coil will turns OFF when the result is in the range or the function is disabled.

The example below shows how to configure MD function.

※ Error output coil M01 will turn ON when the compute result is overflow.

PID (Proportion- Integral- Differential)

The SG2 smart relay includes 15 PID coils that can be used throughout a program. The PID function performs a simple integral-math-calculation which is according to the equation as shown in below. There are 9 parameters for proper configuration. The table below describes each configuration parameter, and lists each compatible element for configuring PID.

(1) (2) (3) (4)		(5) (6) (7)	$\begin{aligned} & -8 \\ & -9 \end{aligned}$	Symbol	Description
				(1)	PI: PID current value (-32768~32767)
				(2)	SV: Set value (-32768~32767)
				(3)	PV: Feedback value (-32768~32767)
				(4)	T_{S} : Sampling time (1~32767* 0.01s)
				(5)	K_{p} : Proportional gain (1~32767\%)
				(6)	T_{I} : Integration time ($1 \sim 32767$ * 0.1s)
				(7)	T_{D} : Differential time (1~32767* 0.01s)
				(8)	Error output coil (M, N, NOP)
				(9)	PID code (PI01~PI0F)

The parameters from (1) to (7) can be a constant or refer to the current value of other function The error coil will turn ON when either T_{S} or K_{P} equal to 0 . But it will do nothing if the output coil is NOP. The output coil will turns OFF when the result is in the range or the function is disabled.

PID computes formula:

$$
\begin{aligned}
& E V_{n}=S V-P V_{n} \\
& \Delta P I=K_{P}\left\{\left(E V_{n}-E V_{n-1}\right)+\frac{T_{s}}{T_{I}} E V_{n}+D_{n}\right\} \\
& D_{n}=\frac{T_{D}}{T_{S}}\left(2 P V_{n-1}-P V_{n}-P V_{n-2}\right) \\
& P I=\sum \Delta P I
\end{aligned}
$$

The example below shows how to configure PID function.

Three types of PID controller:
Proportional loop (P);
Integral loop (I);
Differential loop (D);
(PID controller diagram)

Proportional controller

According to the difference (or error) EV between the target value and measuring value, this alters the adjustable value (or variables) Δ PI proportionally, then change the output (result) PI of the program control. Proportion controller can work promptly, but it can't make the difference to 0 . The feature of the proportion controller: Correspond to the change (or variation) of the process value instantly.

Integral controller

For smooth and stabilize the system once the EV value and is change drastically, integral control can delay the react of the system and shrink control loop variation.
EV and time automatically adjust variable $\Delta \mathrm{PI}$.

Integral controller characteristic: reduce variation, delay reaction time.

Differential controller

System react is depends by PV value then convert to variable $\Delta \mathrm{PI}$ and control the output result. $\Delta \mathrm{PI}$ will change depend on the value of PV. Process time is reduced via differential controller. Differential control characteristic: reduce vibration, increase stability accelerate process time.

The features of PID control: fast, stable and accurate

Description of K_{P}, T_{I}, T_{D} as show below:
The PID function control variable Kp, Ti and Td :
Increase Kp value to has a fast response time and reduce deviation quickly and the large Kp value will eventually affect the stability of the system or even unstable.
Once the variation is occurred and integral loop start to process, a small Ti setting value has a greater integral result and vice versa.

Differential control has a fast react feature, greater differential time Td setting is able to increase the system response, and minimal the variation but the large differential time settings will un-stabilize the system easily. Although the large Td setting value could reduce response time, user should setting differential time Td value properly to prevent a system become a ultra sensitive controller.

Illustrate diagram for Kp, Ti, Td variable setting value to SV

1, Td and Ti setting value is large. Kp setting value is small.
2 , Td and Ti setting value is small.
3 , Kp setting value is large.

A micro sampling time T_{S} setting, will consume lots of resource of controller and variation value won't have sufficient change, A huge sampling time T_{S} setting, expect stable system and a slow response.
Variable reference chart:

Control type	Application field	$\mathrm{K}_{\mathrm{P}}(\%)$	$\mathrm{T}_{\mathrm{I}}\left({ }^{*} 0.1 \mathrm{~s}\right)$	$\mathrm{T}_{\mathrm{D}}\left({ }^{*} 0.01 \mathrm{~s}\right)$	$\mathrm{T}_{\mathrm{S}}\left({ }^{*} 0.01 \mathrm{~s}\right)$
Fast temperature variation	Small space and capacity	625	30	100	50
Slow Temperature variation	Large space and capacity	1250	120	800	100
Slow Pressure	Slow pressure variation	1500	5	400	100
Fast Pressure	Fast pressure variation	3750	2	1000	100

K_{P}, T_{I}, T_{D} is adjustable after observe the application field.

MX (Multiplexer)

The SG2 smart relay includes 15 MX coils that can be used throughout a program. This function set its current value to be 0 or one of 4 preset values which depends on the state of selection bit 1 and 2 . There are 7 parameters for proper configuration. The table below describes each configuration parameter, and lists each compatible element for configuring MX.

The parameters from (1) to (4) can be constant or refer to the current value of other function. The table below describes the relationship between parameter and MX current value.

disable	$\mathrm{MX}=0 ;$
enable	$\mathrm{S} 1=\mathrm{OFF}, \mathrm{S} 2=\mathrm{OFF}: \mathrm{MX}=\mathrm{V} 0 ;$
	$\mathrm{S} 1=\mathrm{OFF}, \mathrm{S} 2=\mathrm{ON}: \mathrm{MX}=\mathrm{V} 1 ;$
	$\mathrm{S} 1=\mathrm{ON}, \mathrm{S} 2=\mathrm{OFF}: \mathrm{MX}=\mathrm{V} 2 ;$
	$\mathrm{S} 1=\mathrm{ON}, \mathrm{S} 2=\mathrm{ON}: \mathrm{MX}=\mathrm{V} ;$

For example, assign S1 and S2 to refer to the I 01 and X 01 , and $\mathrm{V} 0=16513$ (preset value 0), V1= AT01 (preset value 1), V2=AQ01 (present value 2) and V3=DR01 (preset value 3). When turns 101 ON and X01 OFF, then $\mathrm{MX}=\mathrm{AQ} 01$; if I 01 is at OFF and X 01 is at ON state, the $\mathrm{MX}=\mathrm{AT01}$, and so on.

AR (Analog-Ramp)

The SG2 smart relay includes 15 AR coils that can be used throughout a pro gram. Each AR coils has 2 modes.

AR mode 1

In mode1, AR current level is changed to either Level 1 or Level 2 according to the ON/OFF state of "Sel coil" at a specified rate. There are 12 parameters for proper configuration. The table below describes each configuration parameter, and lists each compatible element for configuring AR.
(9)

$$
A R_{_} \text {current_value }=\left(A R_{_} \text {current_level }-B\right) / A
$$

The parameters from (2) to (8) can be constant or refer to the current value of other function. The table below describes detail information of each parameter of AR.

Sel	Selection level"Sel coil" is at OFF state: target level = Level1 "Sel coil" is at ON state: target level = Level2 ※ The AR current value just can reach the MaxL if the target level is over it. St Error output coilStop coil can start-up to decrease the current level to (5), start/stop level (StSp + Offset) once it turns on, and keeping this level for $100 \mathrm{ms}$. Then AR current value goes to 0.

※ The Error output coil can be M, N or NOP. It will do nothing if select the NOP.

AR will keep the current level at "StSp + Offset "B"" for 100 ms when it’s enabled. Then the current level raises from StSp + Offset "B" to target level according to the © ${ }^{(6) S t e p p i n g ~ R a t e . ~ I f ~ S t ~ t u r n s ~ O N, ~ t h e ~ c u r r e n t ~ v a l u e ~ d e c r e a s e s ~}$ from current level to the level, StSp + B, in the stepping rate. Then AR stays at this level for 100 ms . After 100 ms , AR current level is going to 0 , which means AR current value will equal to 0 .

Timing diagram for AR

The example below shows how to configure AR function.

AR mode2

In mode 2, it supports four different preset levels, but only one of these 4 preset levels can be target level at one time. The current level will change to target level at a designed rate. There are 12 parameters for proper configuration. The table below describes each configuration parameter, and lists each compatible element for configuring AR mode2.

symbol	Description
(1)	AR current value:0~32767
(2)	Level0:0~32767
(3)	Level1:0~32767
4$)$	Level2:0~32767
(5)	Level3:0~32767
(6)	MaxL(max level): 0~32767
(7)	Ta(acceleration time):0.1~3276.7
(8)	AR mode
(9)	Level selection coil(Sel1)
(10)	Level selection coil(Sel2)
(11)	Error output coil(M,N,NOP)
(12)	AR code(AR01~AR0F)

The parameters from (2) to (7) can be constant or refer to the current value of other function. The rate designed by user: Rate $=\frac{M a x L}{T a}$ The table below describes detail information of each parameter of AR mode2.

	S1 = OFF,S2=OFF: target level = Level 0;
Sel1	S1=OFF,S2=ON: target level = Level 1;
Sel2	S1=ON, S2=OFF: target level = Level 2;
	S1=ON, S2=ON: target level = Level 3;
MaxL	The AR current value just can reach the MaxL if the target level is over it.
Ta	The result of MaxL divided by Ta is the raising/lowering rate from current level to target level.
Error output coil	The error coil turns ON when Ta is 0.

※The error output coil can be M,N or NOP, it will do nothing if it was selected as NOP.

AR current value will vary from one level to another lever according to the ON/OFF state of "Sel 1" and "Sel 2", and the raising/lowering rate depends on Ta. When AR is disabled, current value goes to 0 immediately. For detail, you can see the "Timing diagram" show next page.

Timing diagram for AR

The example below shows how to configure AR function.

Edit Contact/Coil				X
$\left[\begin{array}{l\|l\|l}\text { Select Coil No. } & & \text { Error Coil } \\ \text { AR } & \text { O1 (01~0F) Symbol } & \text { NOP } \quad \square\end{array}\right.$				
Function (1~2) Multi-speed Output				
	$\left[\begin{array}{l\|l\|lllll}\text { Sell } & & & & \text { Sel2 } \\ \text { Contact } & \mathrm{N} & \square & 02 & & \\ \text { Contact } & \boxed{N} \quad \square & 03\end{array}\right.$			
OK Cancel				

DR (Data register)

The SG2 smart relay includes 240 DR coils that can be used throughout a program. The DR function plays a important role in data-transmission. Its current value equals to preset value once it's enabled. The data can be signed or unsigned by Operation>>module system set...menu selection from the SG2 Client software or keypad set. There are 3 parameters for proper configuration. The table below describes each configuration parameter, and lists each compatible element for configuring DR.

symbol	Description			
(1)	Current value	Unsigned: $0 \sim 65535$		
Signed: $-32768 \sim 32767$				
(2)	Preset value	Sign		
(3)	DR code (DR01~DRF0)			

The parameter (1) can be a constant or refer to the current value of other function.

U : unsigned data
S: signed data

The example below shows that the preset value refers to C01, when DR01 is conducted, the current value of DR01 will be the current value of C01.

Data register screen on HMI display DR preset value in stop mode and display DR current value in run mode.

STOP	RUN (DR01 $=$ C01 current value)
DR01 $=$ C01	DR01 $=00009$ DR02 $=00000$ DR03 $=00000$ DR04 $=00000$

DR65~DRF0 can retain the current value when SG2 is stopped or powered down.
The last 40 DR registers that from DRC9 to DRF0 are special data register as shown below.
DRD0 ~ DRE3 as special registers used to set parameters, the output value function is as follows:

No.	Function description	
DRD0	AQ01 output mode	0 , voltage mode and reset value when stop; 1, current mode and reset value when stop; 2, voltage mode and keep value when stop; 3 , current mode and keep value when stop;
DRD1	AQ02 output mode	
DRD2	AQ03 output mode	
DRD3	AQ04 output mode	
DRD4	AQ01 output value	Analog output value 0~4095;
DRD5	AQ02 output value	
DRD6	AQ03 output value	
DRD7	AQ04 output value	
DRD8	I/O interface hidden	Refer to "Chapter3:LCD Display and Keypad > Original screen"
DRD9~DRE3	Reserved;	

DRC9~DRCF and DRE4~DRF0 as special registers used to store status, the output current value function is as follows:

No.	Function description	
DRC9	Output pulse number of instruction PLSY	
DRCA	AT01 current degree Fahrenheit	Used as normal registers when no AT01~AT04 input, such as don't connected with extension module 4PT;
DRCB	AT02 current degree Fahrenheit	
DRCC	AT03 current degree Fahrenheit	
DRCD	AT04 current degree Fahrenheit	
DRCE	Reserved	
DRCF	Reserved	
DRE4	A05 input electric current 0~2000	Used as normal registers when no A05~A08 analog input, such as don't connected with extension module 4AI;
DRE5	A06 input electric current 0~2000	
DRE6	A07 input electric current 0~2000	
DRE7	A08 input electric current 0~2000	
DRE8	A01 current value 0~4095	Used as normal registers when no A01 and A02 analog input, such as AC type;
DRE9	A02 current value 0~4095	
DREA	A03 current value 0~4095	Used as normal registers when no A03 and A04 analog input, such as AC type or 12points DC type;
DREB	A04 current value 0~4095	
DREC	A05 current value 0~4095	Used as normal registers when no A05~A08 analog input, such as don't connected with extension module 4AI.
DRED	A06 current value 0~4095	
DREE	A07 current value 0~4095	
DREF	A08 current value 0~4095	
DRF0	Reserved	

Chapter 6: FBD Block Diagram Programming

FBD Instructions 133
FBD system memory space 134
Analog. 136
Analog Input 136
Analog Output 137
Coil Block Instruction 138
HMI 139
PWM function block (only transistor output version). 140
IO Link function block 142
SHIFT function block 144
Logic Block Instructions 145
AND Logic Diagram 145
AND (EDGE) Logic Diagram 145
NAND Logic Diagram 146
NAND (EDGE) Logic Diagram 146
OR Logic Diagram 146
NOR Logic Diagram 147
XOR Logic Diagram 147
SR Logic Diagram 147
NOT Logic Diagram 147
Pulse Logic Diagram. 148
BOOLEAN Logic Diagram 148
Function Block 149
Timer Function Block 150
Common Counter function block 158
High Speed Counter Function Block (DC Version Only) 164
RTC Comparator Function Block 166
Analog Comparator Function Block 171
AS (ADD-SUB) function block 174
MD (MUL-DIV) function block 175
PID (Proportion- Integral- Differential) function block 176
MX (Multiplexer) function block 177
AR (Analog-Ramp) function block 178
Example: 181
DR (Data-Register) function block 182
MU (Modbus) function block 183

FBD Instructions

	Input	Output coil	Range
Input	I		12 (I01~I0C)
Keypad input	Z		4 (Z01~Z04)
Expansion input	X		12 (X01~X0C)
Output	Q	Q	8 (Q01~Q08)
Expansion output	Y	Y	12 (Y01~Y0C)
Auxiliary coil	M	M	63(M01~M3F)
Auxiliary coil	N	N	63(N01~N3F)
HMI		H	31 (H01~H1F)
PWM		P	2 (P01~P02)
SHIFT		S	1 (S01)
I/O LINK		L	8 (L01~L08)
Logic/Function Block	B	B	260 (B001~B260)
Normal ON	Hi		
Normal OFF	Lo		
No connection	Nop		
Analog input	A		8 (A01~A08)
Analog input parameter	V		8 (V01~V08)
Analog output		AQ	4(AQ01~AQ04)
Analog temperature input	AT		4(AT01~AT04)

FBD program can only be edited and modified in the SG2 Client software and write to SG2 controlled equipments via communication cable. Via controlled equipment, FBD program is available for querying or the parameter of the function block of the program for modifying. The preset value of Block could be a constant or other block code. That means the preset value of this block is other block's current value.

FBD system memory space

The size of a FBD program in SG2 is limited by the memory space (memory used by the blocks).
Resources available in SG2:

Block number	System memory (byte)
$\mathbf{2 6 0}$	$\mathbf{6 0 0 0}$

※ Each FBD block's size isn't restricted, it depends its function.
※ Function Block includes three kinds of function: special function, adjust-controlling function and communication function. Function type and number are shown in the table below.

	Function type	Number
special function	Timer (T)	250
	Counter (C)	250
	RTC (R)	250
	Analog Comparator (G)	250
adjust-controlling function	Addition and Subtraction (AS)	250
	Multiplication and Division (MD)	250
	PID control (PI)	30
	Multiplexer (MX)	250
	Analog Ramp control (AR)	30
	data register (DR)	240
communication function	Modbus instruction (MU)	250

※ Each function block occupied a BLOCK; the available number is limited by the number of B, system memory space and function block number.

	Block number	System memory (byte)	Function Block number										
			T	C	R	G	AS	MD	PI	MX	AR	DR	MU
Total source	260	6000	250	250	250	250	250	250	30	250	30	240	250
Timer mode 0	1	5	1										
Timer mode1~6	1	10	1										
Timer mode 7	1	12	2										
Counter mode 0	1	5		1									
Counter mode 1~7	1	14		1									
Counter mode 8	1	16		1									
RTC mode 0	1	5			1								
RTC mode 1~4	1	11			1								
Analog mode 0	1	5				1							
Analog mode 1~7	1	12				1							
AS	1	11					1						
MD	1	11						1					
PID	1	17							1				
MX	1	17								1			
AR	1	23									1		
DR	1	6										1	
MU	1	12											1

※ Logic Block include: AND, AND EDGE, NAND, NAND EDGE, OR, NOR, XOR, NOT, RS, PULSE, BOOLEAN. Each logic block occupied a BLOCK; the available number is limited by the number of B and system memory space. Logic function blocks source show as blow table:

Logic	Block number	System memory (byte)
AND	1	8
AND(EDGE)	1	8
NAND	1	8
NAND(EDGE)	1	8
OR	1	8
NOR	1	8
XOR	1	6
RS	1	6
NOT	1	4
PULSE	1	4
BOOLEAN		12

Example: calculating resources

Input coils: I01, X01, M01, I02;
Output coils: H01, N01;
Normal ON: Hi001;
Analog input: A01;
Analog output: AQ01;
Logic and function block: B001~B006. Coil input/output and analog input/output don't occupied B number and memory space.

Number	Function / Logic	Memory bytes	Function number
B001	AND	8	
B002	Timer mode 7	12	T01, T02
B003	Counter mode 1	14	C01
B004	NOT	4	
B005	MD	11	MD01
B006	DR register	6	DR01

	B number	Memory bytes	
Memory space limits in SG2	260	2600	
Resource used by program	6	55	
Still available in SG2	254	2545	

Analog

Analog include:

Analog input	A01~A04
Expansion analog input	A05~A08
Analog input count value	V01 \sim V08
Expansion temperature input	AT01~AT04
Expansion analog output	AQ01~AQ04

Analog input and output value can be used as preset value of other function blocks.

Analog Input

	Number	Range	Meaning
Analog input value	A01~A04	$0 \sim 999$	$0 \sim 9.99 \mathrm{~V}$
Expansion analog input value	A05 \sim A08	$0 \sim 999$	$0 \sim 9.99 \mathrm{~V}$
Analog input count value	V01~V08	$0 \sim 999999$	
Expansion temperature input value	AT01~AT04	$-1000 \sim 6000$	$-100.0 \sim 600.0^{\circ} \mathrm{C}$

V0x = A0x * Gain + OffSet
Example: $\quad \mathrm{A} 01=1.23, \mathrm{~V} 01=\mathrm{A} 01 * 10-0=12.30$; B001(AS01)=A01+V01-AT01;

More information about expansion analog input to see: Chapter 8 Expansion Module-Analog Module.

Analog Output

AQ instructions need to use with extension analog out module 2AO.
The default output of AQ is $0 \sim 10 \mathrm{~V}$ voltage, the 12bits data is $0 \sim 4095$ and the corresponding value of AQ is $0 \sim 1000$. It also can be set as $0 \sim 20 \mathrm{~mA}$ current output, the 12 bits data is $0 \sim 2047$ and the corresponding value of AQ is $0 \sim 500$. The 12 bits data saved in DRD4~DRD4. The output mode of $A Q$ is set by the current value of DRD0~DRD3.

	Output register	Mode register
Channel 1: AQ01	DRD4	DRD0
Channel 2: AQ02	DRD5	DRD1
Channel 3: AQ03	DRD6	DRD2
Channel 4: AQ04	DRD7	DRD3

Mode	DRD0~DRD3 data definition
1	$0:$ voltage mode and reset value when stop;
2	1: Current mode and reset value when stop;
3	2: voltage mode and keep value when stop;
4	3: Current mode and keep value when stop;

※ It will be thought as 0 if the value of DR isn't in the range of $0 \sim 3$. That means the output mode of AQ is mode 1.
※ When output value type of AQ is set to constant, AQ output value changed by DR value ($\mathrm{AQx}=\mathrm{DRx} / 4.095$);
※ When output value type of AQ is set to other parameters variables, DR value changed by AQ output value (DRx=AQx*4.095).
※ More information about expansion analog input to see: Chapter 8 Expansion Module-Analog Module.

Example 1: AQ01 preset value is constant;

When running and disable M01, DRD4 output value is AQ01 setting value 4000, and AQ01 output 9.77V;
When running and enable M01, adjust the value of DRD4, AQ01 output value changed with DRD4;

Example 2: AQ01 preset value is other parameters;

When running, DRD4 output value is out control of I01. AQ01 output value is A01, adjust the value of A01, DRD4 output value changed with A01;

Coil Block Instruction

Output coils including Q, Y, M, N, H, L, P, S.
FBD menu display:

H, L, P, S is special function coil, and press "OK" button into function display.

Press the button:

OK	Into function display when cursor address is output coil and coil type is $\mathrm{H}, \mathrm{L}, \mathrm{P}, \mathrm{S}$.
\rightarrow	Move cursor: input terminal \rightarrow output coil type \rightarrow output coil number
\leftarrow	Move cursor: output coil number \rightarrow output coil \rightarrow input terminal \rightarrow Logic/Function display (input terminal is block)
$\uparrow \downarrow$	Change output coil type when cursor address is output coil: $\mathrm{Q} \Leftrightarrow \mathrm{Y} \Leftrightarrow \mathrm{M} \Leftrightarrow \mathrm{N} \Leftrightarrow \mathrm{H} \Leftrightarrow \mathrm{L} \Leftrightarrow \mathrm{P} \Leftrightarrow \mathrm{S} \Leftrightarrow \mathrm{Q} \ldots ;$ Change output coil number when cursor address is output coil number;

HMI

The SG2 smart relay includes a total of 31 HMI instructions that can be used throughout a program. Each HMI instruction can be configured to display information on the SG2 16×4 character LCD in text, numeric, or bit format for items such as current value and preset value for functions, Input/Output bit status, and text. There are three kinds of text in HMI. They are Multi Language, Chinese (fixed) and Chinese (edit)
※ Only the coils, function blocks and analog value which used in the program can be set in HMI to display status, preset value and current value.

Each HMI instruction has a choice of 2 operation modes.
Mode1, display mode when pressing key "SEL" can display HMI preset.
Mode2, no display mode when pressing key "SEL" can't display HMI preset. Displays preset only be enabled.

Example: H01 controlled by M01, and setting H01 mode1, display M01 status, preset value and current value for block B001 (Timer T01), current value for block B002 (Counter C01).

FBD output coil display M01: enable input coil	Press "OK" button into function display	Press "SEL" , " $\uparrow \downarrow$ " and "OK" to edit HMI mode
	HMI01 Mode: 1 Display	HMI01 Mode: 2 No Display

HMI display and keypad function, same as ladder mode HMI function.

Press "SEL" button when stopping	Enabled display when running	Press "SEL" , " $\uparrow \downarrow$ " and "OK" to edit preset value, coil status
M01=\#\#\#	M01=ON	M01=ON
T01=20.00Sec	$\mathrm{T} 01=20.00 \mathrm{Sec}$	$\mathrm{T} 01=30.00 \mathrm{Sec}$
T01=\#\#.\#\#Sec	T01=10.00Sec	$\mathrm{T} 01=03.60 \mathrm{Sec}$
C01=\#\#\#\#\#\#\#	C01 $=000001$	C01=000002

※ More information about HMI/TEXT to see:
Chapter 3: Program Tools—Ladder Logic Programming Environment —HMI/TEXT.

PWM function block (only transistor output version)

The transistor output model smart relay includes the capability to provide a PWM (Pulse Width Modulation) output on terminal Q01 and Q02. The PWM instruction is able to output up to an 8-stage PWM waveform. It also provides a PLSY (Pulse output) output on terminal Q01, whose pulse number and frequency can be changed. The table below describes number and mode of PWM.

PWM mode

The PWM output terminal Q01 or Q02 can output 8 PWM waveforms. Each PWM has 8 group preset stages which contents Width and Period. The 8 group preset values can be constant or other function current value.

FBD output coil display M01: enable input coil	Press "OK" button into function display	Press "SEL" , " $\uparrow \downarrow$ " and "OK" to select stage and edit preset value
M01 ${ }^{\text {T }}$	PWM01 Mode:1	PWM01 Mode:1
N01-	SET 1 Out:Q01	SET 2 Out:Q01
No2才 P01 \|	TP1=00005	P2 $=00002$
$\mathrm{NO}{ }^{\square}$	TT1 $=00010$	TT2 $=00011$

Display Description
P01: PWM code (PWM01~PWM02)
M01: Enable Input (I01~ B260)
N01: Select1 (I01~ B260)
N02: Select2 (I01~ B260)
N03: Select3 (I01~ B260)
Mode: PWM mode (1)
SET x: present stages as operating (1~8)
Out: Output port (Q01~Q02)
TPx: Width of preset stage (0~32767 ms)
TTx: Period of preset stage (1~32767 ms)

Enable	Select3	Select2	Select1	stage	PWM Output
OFF	X	X	X	0	OFF
ON	OFF	OFF	OFF	1	Preset stage 1
ON	OFF	OFF	ON	2	Preset stage 2
ON	OFF	ON	OFF	3	Preset stage 3
ON	OFF	ON	ON	4	Preset stage 4
ON	ON	OFF	OFF	5	Preset stage 5
ON	ON	OFF	ON	6	Preset stage 6
ON	ON	ON	OFF	7	Preset stage 7
ON	ON	ON	ON	8	Preset stage 8

Example:
The state of N01, N02 and N03 are 000, so PWM output pulse is stage1 like this as setting above:

The state of N01, N02 and N03 decide PWM output. PWM stages can be changed by the status of N01, N02 and N03 when P01 is running.

PLSY mode

The PLSY output terminal Q01 can output preset number of pulse whose frequency is variable from 1 to 1000 Hz .

FBD output coil display M01: enable input coil	Press "OK" button into function display	Press "SEL", " \downarrow " and "OK" to edit preset value
M01T	PWM01 Mode:2	PWM01 Mode:2
\| P01	PF $=00100$	$\mathrm{PF}=00100$
	PN $=00000$	PN $=00300$

※ PF: Preset frequency of PLSY (1~1000Hz); PN: Preset pulse number of PLSY (0~32767);
※ Total number of pulse storing in DRC9;
※ PLSY stops outputting pulse after it has output PN pulses.
PLSY will be going on as long as it's enabled if PN is 0 .

Example:

Parameter setting: $\mathrm{PF}=500 \mathrm{~Hz}, \mathrm{PN}=5$, output as shown below:

PLSY stops outputting when the number of output pulse is completed.

IO Link function block

Up to 8 additional SG2 units can be configured as independent Slave nodes, each running their own logic program and their I/O linked to one Master smart relay. The Master smart relay’s ID must be 00, and Slave nodes’ ID should start with 01 and be continuous. If nodes' ID isn't continuous, the Master won't communication with those nodes which are behind the first broken. For example, the nodes’ ID is $01,02,04$ and 05 . The Master thinks there are only two Slave nodes whose ID is 01 and 02 , and communication with them.

Each controller can use 8 IO Link (L01~L08). Only one IO Link instruction can work at Mode 1(send mode), and the other IO Link instructions must be Mode 2 (receive mode).
The Mode 1: Send memory range is determined by the Controller ID. The adjacent table show the memory range of Wxx locations associated with each controller ID.
The Mode 2: read the selected Wxx status and write to the selected coil. If the select coil type is input coil I or X, coil status can't be changed by Wxx status.

FBD output coil display M01: enable input coil	Press "OK" button into function display	Press "SEL" , " \downarrow " and "OK" to modify mode, coil number, coil type and W address
	I/0 Link01 Mode: 1 Num: 5 I03 \rightarrow N09 I07 \rightarrow W13	$\begin{aligned} & \text { I/O Link01 } \\ & \text { Mode: } 2 \text { Num: } 5 \\ & \text { M04-W17 } \\ & \text { M08-W21 } \end{aligned}$

Display Description
L01: I/O link output terminal (L01~L08)
M01: Enable Input (I01~ B260)
Mode: Setting mode(1,2) 1:sending; 2:receiving
Num: Number of send/receive points (1~8)
I03...I07: Type of send/receive points
W09...W13: Send/Receive W Table list location

Type of points	Range
Inputs	$\mathrm{I} 01 \sim \mathrm{I} 0 \mathrm{C} / \mathrm{i} 01 \sim \mathrm{i} 0 \mathrm{C}$
Outputs	$\mathrm{Q} 01 \sim \mathrm{Q} 08 / \mathrm{q} 01 \sim \mathrm{q} 08$
Auxiliary coil	$\mathrm{M} 01 \sim \mathrm{M} 3 \mathrm{~F} / \mathrm{m} 01 \sim \mathrm{~m} 3 \mathrm{~F}$
Auxiliary coil	$\mathrm{N} 01 \sim \mathrm{~N} 3 \mathrm{~F} / \mathrm{n01} \mathrm{\sim n3F}$
Expansion inputs	$\mathrm{X} 01 \sim \mathrm{X} 0 \mathrm{C} / \mathrm{x} 01 \sim \mathrm{x} 0 \mathrm{C}$
Expansion outputs	$\mathrm{Y} 01 \sim \mathrm{Y} 0 \mathrm{C} / \mathrm{y} 01 \sim \mathrm{y} 0 \mathrm{C}$

Example 1: IO Link Mode 1
Set mode $=1$, num $=5$, set type of points as I03, the state of actual sending terminal I03~I07 is sent to memory list; the controller ID=1, the state of corresponding memory list position W09~W13, and relationship of sending terminal is as below:

mode=1, num=5, type=I03~I07, ID=1 (W09~W13)								
Memory List Position	W09	W10	W11	W12	W13	W14	W15	W16
Corresponding receiving	$\boldsymbol{4}$							
Or sending terminal	I 03	I 04	I 05	I06	I07	0	0	0

Example 2: IO Link Mode 2

Set mode=2, num=5, set type of points as start from M03, set W table as from W 17 , when enabling the IO Link, the state "ON/OFF" of M03~M07 is controlled by the state of memory list position W17~W21.

mode=1, num=5, type=M03~M07, W=W17~W21							
Memory List Position	W17	W18	W19	W20	W21		
Corresponding receiving	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow		
Or sending terminal	M03	M04	M05	M06	M07		

I/0 Link02
Mode: 2 Num: 5
M03-W17
M07-W21

IO Link diagram as blow:

- max. 8 points I/O send per stations
- Max 7*8 (=56) points I/O received per station

ID must set to be $0,1,2, \ldots$ (max to 7)

Remote I/O disable

※ More information about IO Link to see "Chapter 720 Points RS485 type Models Instruction".

SHIFT function block

The SG2 smart relay includes only one SHIFT instruction that can be used throughout a program. This function output a serial of pulse on selection points depending on SHIFT input pulse.

FBD output coil display I01: enable input coil	Press "OK" button into function display	Press "SEL", " \downarrow " and "OK" to modify coil number and coil type
	Shift01	Shift01
I01才		
I02才 S01 \|	Type:Q01-Q05	Type: N03-N05
-	Num: 5	Num: 3

Display Description
S01: Shift code (S01)
I01: Enable Input (I01~ B260)
I02: Shift input (I01~ B260)
Type: Shift output coils
Num: Preset number of output pulse (1~8)

Shift output coils	Range
Outputs	Q01~Q08
Expansion outputs	Y01~Y0C
Auxiliary coil	M01~M3F
Auxiliary coil	N01~N3F

Timing diagram

Logic Block Instructions

Logic blocks display in FBD:

Press the button:

\rightarrow	Move cursor: input terminals (1) \rightarrow Logic block number (3) \rightarrow display next connected block or coil
\leftarrow	Move cursor: Logic block number (3) \rightarrow input terminals (1) \rightarrow Logic/Function display (input terminal is block)
$\uparrow \downarrow$	Move cursor up or down (when multiple input terminals)

※ Logic Block include: AND, AND EDGE, NAND, NAND EDGE, OR, NOR, XOR, NOT, RS, PULSE, BOOLEAN.

AND Logic Diagram

I01 And I02 And I03
Note: The input terminal is NOP which is equivalent to "Hi";
The B output ON when all input terminals status are ON;

AND (EDGE) Logic Diagram

I01 And I02 And I03 And D
Note: The input terminal is NOP which is equivalent to "Hi";
The B output ON a scan cycle time when all input terminals status are ON;

NAND Logic Diagram

Not(I01 And I02 And I03)
Note: The input terminal is NOP which is equivalent to "Hi";
The B output ON when one of the input terminals status is OFF;

NAND (EDGE) Logic Diagram

Not(I01 And I02 And I03) And D
Note: The input terminal is NOP which is equivalent to "Hi";
If change one input terminal to OFF when all input terminals are ON, the B output ON a scan cycle time;

OR Logic Diagram

NOR Logic Diagram

Not (I 01 or I02 or I03)
Note: The input terminal is NOP which is equivalent to "Lo";
The B output ON when all input terminals status are OFF;

XOR Logic Diagram

I01 XOR I02
Note: The input terminal is NOP which is equivalent to "Lo";
The B output ON when the input terminals status are different;

SR Logic Diagram

FBD:

LADDER:

Logic Table

I01	I02	B001
0	0	holding
0	1	0
1	0	1
1	1	0

Note: The input terminal is NOP which is equivalent to "Lo";

NOT Logic Diagram

LADDER:

Not I01
Note: The input terminal is NOP which is equivalent to "Hi";

Pulse Logic Diagram

Note: The input terminal is NOP which is equivalent to "Lo";
The B output change status when input terminal OFF $\rightarrow \mathrm{ON}$;

BOOLEAN Logic Diagram

Note: The input terminal is NOP which is equivalent to "Lo";

Description:

The relationship between input and real table is shown below.

Input1	Input2	Input3	Input4	Output (edit)	Example	Real table
0	0	0	0	0/1	0	8
1	0	0	0	0/1	0	
0	1	0	0	0/1	0	
1	1	0	0	0/1	1	
0	0	1	0	0/1	0	A
1	0	1	0	0/1	1	
0	1	1	0	0/1	0	
1	1	1	0	0/1	1	
0	0	0	1	0/1	1	5
1	0	0	1	0/1	0	
0	1	0	1	0/1	1	
1	1	0	1	0/1	0	
0	0	1	1	0/1	1	1
1	0	1	1	0/1	0	
0	1	1	1	0/1	0	
1	1	1	1	0/1	0	

Function Block

Operation rules of FBD function blocks is basically same as ladder mode.

Function blocks display in FBD:

If cursor address is "Par", user can press "OK" button into parameter display and edit preset value.

Press the button:

\rightarrow	Move cursor: input terminals or Parameter \rightarrow Function block number \rightarrow display next connected block or coil
\leftarrow	Move cursor: Logic block number \rightarrow input terminals or parameter \rightarrow Logic/Function display (input terminal is block)
$\uparrow \downarrow$	Move cursor up or down (input terminals \Leftrightarrow set parameter)
OK	Enter parameter display when cursor address is Set parameter

Parameter display:

Press the button:

$\leftarrow \rightarrow$	Find and display previous or next function block when cursor address is Block number; Move cursor left or right when cursor address is Preset value;
SEL $+\uparrow \downarrow$	Find and display previous or next function block when cursor address is Block number;
SEL $+\leftarrow \rightarrow$	Display parameter1 or parameter2 when B function is PI, MX or AR;
$\uparrow \downarrow$	Move cursor up or down (Block number \Leftrightarrow Preset value); Modify data or number when in edit mode;
SEL	Enter edit mode when cursor address is Preset value; Modify preset value type when in edit mode;
ESC	Cancel the current edit; Quite parameter display;
OK	Save the current edit;

Timer Function Block

There is a maximum of 250 timers function blocks under FBD mode, can be set mode $0 \sim 7$ and the function is same as Ladder mode.
※ Timer Mode7 occupied one blocks and two timers.
※ T0E and T0F keep their current value after a loss of power to the smart relay if "M Keep" is active.

Timer edit and display:

(1) Timer mode 0 (Internal coil Mode)

Mode 0 Timer (Internal Coil) used as internal auxiliary coils. No timer preset value and no parameter display.

(2) Timer mode 1 (ON-Delay A Mode)

Mode 1 Timer will time up to a fixed value and stop timing when the current time is equal to the preset value. Additionally, the Timer current value will reset to zero when Timer is disabled.

(3) Timer mode 2 (ON-Delay B Mode)

Mode 2 Timer is an ON-Delay with reset that will time up to a fixed preset value and stop timing when the current time is equal to the preset value. Additionally, the Timer current value will be kept when Timer is disabled.

(4) Timer mode 3 (OFF-Delay A Mode)

Mode 3 Timer is an OFF-Delay with reset that will time up to a fixed preset value and stop timing when the current time is equal to the preset value. Additionally, the Timer current value will reset to zero when Timer is disabled.

Timing up, output terminal

(5) Timer mode 4(OFF-Delay B Mode)

Mode 4 Timer is an OFF-Delay with reset that will time up to a fixed preset value and stop timing when the current time is equal to the preset value. Additionally, the Timer current value will reset to zero when Timer is disabled.

enable reset relay
OFF

$$
\mathrm{t}=\text { preset value }
$$

(6) Timer mode 5(FLASH A Mode)

Mode 5 Timer is a Flash timer without reset that will time up to a fixed preset value and then change the state of its status bit. Additionally, the Timer current value will reset to zero when Timer is disabled.

Timing enable relay

Time up, output terminal

(7) Timer mode 6(FLASH B Mode)

Mode 6 Timer is a Flash timer with reset that will time up to a fixed preset value and then change the state of its status bit. Additionally, the Timer current value will reset to zero when Timer is disabled.

enable reset relay

(8) Timer mode 7(FLASH C Mode)

Mode 7 Timer is a Flash Timer which using two Timers in a cascade configuration without reset. The second Timer number follows the first Timer. The cascade configuration connects the timer status bit of first timer to enable the second timer. The second timer will time up to its preset value then flash and its timer status bit will enable the first timer. Additionally, the Timer current value will reset to zero when Timer is disabled.

Common Counter function block

There is a maximum of 250 counter function blocks under FBD mode, can be set mode $0 \sim 6$ as common counter and mode 7~8 as high-speed counter, and the function is same as Ladder mode.

Counter edit and display:

FBD display:

Parameter display:

(1) Counter Mode 0 (internal coil)

Mode 0 counter (Internal Coil) used as internal auxiliary coils. No timer preset value and no parameter display.

(2) Counter Mode 1 (Fixed Count, Non-Retentive)

Mode 1 Counter will count up to a fixed preset value and stop counting when the current count is equal to the preset value, or count down to 0 and stop counting when the current count is equal to 0 . Additionally, the current count value is non-retentive and will reset to init value on a powering up to the smart relay.

Mode=1

※ Under this mode, the counter current value will be init value when the smart is power up or switching between RUN and STOP. The init value is 0 if the counter configured as counting up, else, it is preset value.
(3) Counter Mode 2 (Continuous Count, Non-Retentive)

Mode 2 Counter will count up to a fixed preset value and continue counting after the preset value, but it won't count when the current value equals 0 if it's configured as down Counter. Additionally, the current count value is non-retentive and will reset to init value on a powering up to the smart relay or switching between RUN and STOP.

Note: The ">"means the current value appeared will be greater than present value.

Mode $=2$

※ Under this mode, Counter will continue counting after reaching preset value if it's configured as counter up. But it stops counting when its current value is 0 if it's configured as counter down.
※ The counter current value will be init value when the smart's status switches between RUN and STOP or the smart is power up. If the counter configured as counting up, the init value is 0 , else, it is preset value.
（4）Counter Mode 3（Fixed Count，Retentive）

Mode 3 Counter operation is similar to Mode 1 except its current count value is retentive when Counter powers down．So，the current value won’t be init value when Counter powers up，but be the value when it powering down．Mode 3 Counter will count up to a fixed preset value and stop counting at that value，or stop counting when its current value is 0 if it＇s configured as down counter．

Note：The＂PD＂means the current value will be retain until the power recover； This mode is similar to mode 1，but：
※ First 31 Counter functions（C01～C1F）can keep their current value after a loss of power to the smart relay．
※ The current counter value will keep when the smart switches between RUN and STOP if C－keep is active．

（5）Counter Mode 4（Continuous Count，Retentive）

Mode 4 Counter operation is similar to Mode 2 except its current count value is retentive．The current count value is retentive and will keep its current count after a loss of power to the smart relay．Mode 4 Counter will count up to a fixed preset value and then continue counting after the preset value，but it won＇t count when the current value equals 0 if it＇s configured as down Counter．

	FBD display	Parameter display	
Counting Input \rightarrow	Z01т لـ ${ }_{\text {¢ }}$ B001	B001 C01	
Up／Down Counting \rightarrow	N01才 $ـ \square 1$	000000	\leftarrow Current value
Reset \rightarrow	X01才 1 － QO_{2}	$C=000020$	\leftarrow Preset value
Counting Parameter \rightarrow	Par ${ }^{\perp}>\mathrm{PD}$ 」		

Note：The＂＞＂means the current value appeared will be greater than present value；
The＂PD＂means the current value will be retain until the power recover；
This mode is similar to mode 2，but：
※ First 31 Counter functions（C01～C1F）can keep their current value after a loss of power to the smart relay．
※ The current counter value will be kept when the smart switches between RUN and STOP if＂C－keep＂is active．

(6) Counter Mode 5 (Continuous Count, Up-Down Count, Non-Retentive)

Mode 5 Counter's operation is similar to Mode 2 except its current count value is continuous and non-retentive. The status bit is fixed to the non-zero preset value regardless of the state of the direction bit. Its status bit will be ON when the counter current value isn't less than its preset value, and will be OFF when the current value is less than its preset value.

Note: The "C" means compare count;
The ">"means the current value appeared will be greater than present value.

※ Under this mode, the count will continuous after reaching its preset value;
※ The current value is always 0 regardless of the state of its direction bit when the reset is availability;
※ The current value is always 0 regardless of the state of its direction bit when the smart switches between RUN and STOP.
(6) Counter Mode 6(Continuous Count, Up-Down Count, Retentive)

Mode 6 Counter's operation is similar to Mode 5 except its current count value is continuous and retentive.

Note: The "C" means compare count;
The ">" means the current value appeared will be greater than present value;
The "PD" means the current value will be retain until the power recover;

First 31 Counter functions (C01~C1F) can keep their current value after a loss of power to the smart relay.
※ The current counter value will be kept when the smart switches between RUN and STOP if "C-keep" is active.

Reset counter

Counter output

High Speed Counter Function Block (DC Version Only)

The DC powered version smart relays include two 1 KHz high speed inputs on terminal I01 and I02. These can be used as general purpose DC inputs or can be wired to a high speed input device (encoder, etc.) when configured for high speed counting.
(1) Counter Mode 7 (DC powered versions only)

The Mode 7 High Speed Counter can use either input terminals I01 or I02 for forward up-counting to 1 KHz maximum at 24VDC high speed input signal. The selected Counter Coil (B) will turn ON when the pulse count reaches preset value and remain ON. The counter will reset when the Reset Input is active.

Parameter display

Note: High speed input terminal I01,I02

Example as shown: Q01 output ON with C01 (B001), but Q01 output with scan time.

Scan time
(2) Counter Mode 8 (DC powered versions only)

The Mode 8 High Speed Counter can use either input terminals 101 or I 02 for forward up-counting to 1 KHz maximum at 24VDC high speed input signal. The selected Counter Coil (C01-C1F) will turn ON when the pulse count reaches the target "Preset ON" value and remain ON until the pulse count reaches the target "Preset OFF" value. The counter will reset when the preceding rung is inactive.

Note: High speed input terminal I01,I02

> Mode=8

RTC Comparator Function Block

There is a maximum of 250 RTC function blocks under FBD mode, can be set mode $0 \sim 4$ and the function is same as Ladder mode.
(1) RTC Mode 0(Internal Coil)

Mode 0 RTC (Internal Coil) used as internal auxiliary coils. No timer preset value and no parameter display.

	D display
Enable Input \rightarrow	

(2) RTC Mode 1(Daily)

The Daily Mode 1 allows the Bxxx (Rxx) coil to active based on a fixed time across a defined set of days per week. The below example1 allows for selection of the number of days per week (i.e. Mon-Fri) and the Day and Time for the B002 (R01) coil to activate ON, and the Day and Time for the B002 (R01) coil to deactivate OFF.

Example 1:

Note: Parameter display current time: week, hour and minute;
Parameter display ON/OFF preset value: week, hour and minute.

Example 2:

(3) RTC Mode 2 (Continuous)

The Interval Time Mode 2 allows the Bxxx (Rxx) coil to activate based on time and day per week. The below example1 allows for selection of Day and Time for the B002 (R01) coil to activate ON, and Day and Time for the B002 (R01) coil to deactivate OFF.

Example 1:

Note: Parameter display current time: week, hour and minute;
Parameter display ON/OFF preset value: week, hour and minute.

Example 2:

(4) RTC Mode 3 (Year Month Day)

The Year-Month-Day Mode 3 allows the Bxxx (Rxx) coil to activate based on Year, Month, and Date. The below example1 allows for selection of Year and Date for the B002 (R01) coil to activate ON, and Year and Date for the B002 (R01) coil to deactivate OFF.

Example 1:

Note: Parameter display current time: year, month and day;
Parameter display ON/OFF preset value: year, month and day.

Example 2:

(5) RTC Mode 4(30-second adjustment)

The 30 -second adjustment Mode 4 allows the Bxxx (Rxx) coil to activate based on week, hour, minute and second. The below examples show for selection of week, hour, minute and second for the B002 (R01) coil to activate ON, and 30-second adjustment then B002 (R01) OFF.

Example 1: adjustment preset second <30 s

Parameter display

Note: Parameter display current time: week, hour, minute and second;
Parameter display adjustment preset value: week, hour, minute and second.

※ The present time will be 8:00:00 when it achieves 8:00:20 at first time, and RTC status bit B002 (R01) will be ON. RTC status bit B002 (R01) will be OFF when the present time achieves 8:00:20 at second time. Then time continuous going. So, this means that RTC status bit is ON for 21 seconds.

Example 2: adjustment preset second $>=30 \mathrm{~s}$

B002	R01
ON	
SA 08:00: 40	

※ The present time will change to be 8:01:00 when it achieves 8:00:40, and RTC status bit B002 (R01) turns ON. Then time is gonging on and B002 (R01) turns OFF. This means that the RTC status bit will be ON for one pulse.

Analog Comparator Function Block

There is a maximum of 250 analog comparator function blocks under FBD mode, can be set mode 0~7 and the function is same as Ladder mode.
(1) Analog Comparison Mode 0 (Internal coil)

Mode 0 analog comparator (Internal Coil) used as internal auxiliary coils. No timer preset value and no parameter display.

FBD display

(2) Analog Comparison Mode 1~7

Analog comparator mode 1~7, setting three parameters, analog input Ax, analog input Ay and reference value G.
Analog Comparator mode 1: (Ay- reference value $G) \leqslant A x \leqslant(A y+$ reference value $G)$, output $O N$;
Analog Comparator mode 2: Ax \leqslant Ay, output ON;
Analog Comparator mode 3: $\mathrm{Ax} \geqslant \mathrm{Ay}$, output ON ;
Analog Comparator mode 4: reference value $G \geqslant A x$, output ON;
Analog Comparator mode 5: reference value $G \leqslant A x$, output ON;
Analog Comparator mode 6: reference value $G=A x$, output ON;
Analog Comparator mode 7: reference value $G \neq A x$, output $O N$;

Example for program and edit:

Analog Function Block

Analog Comparison Mode 1

Parameter display

B003	G01	
Ax= A01 V		\leftarrow Analog Input
Ay=A05 V		\leftarrow Analog Input
G $=02.50 \mathrm{~V}$		\leftarrow Reference

B003 (G01) output ON when the value of A01 in between (A05-2.50) ~ (A05+2.50);
Parameter display current value of Ax and Ay when running mode;

Analog Comparison Mode 2

B003 (G01) output ON when the value of A01 is not greater than the value of A05;
Parameter display current value of Ax and Ay when running mode;

Parameter display

B003	G01	
Ax＝A01 V		\leftarrow Analog Input
Ay $=A 05 \mathrm{~V}$		\leftarrow Analog Input
G $=02.50 \mathrm{~V}$		\leftarrow Reference

B003（G01）output ON when the value of A01 is not lower than the value of A05；
Parameter display current value of Ax and Ay when running mode；

Analog Comparison Mode 4

Enable Input \rightarrow	D display	Parameter display		
		$\begin{array}{ll} \hline \text { B003 } & \text { G01 } \\ \text { Ax }=\mathrm{A} 01 \mathrm{~V} & \end{array}$	\leftarrow	Analog Input
Parameter \rightarrow	Par ${ }^{\perp}$ 」	$G=02.50 \mathrm{~V}$	\leftarrow	Reference

B003（G01）output ON when the value of A01 is not greater than 2．50；
Parameter display current value of Ax when running mode；

Analog Comparison Mode 5

Enable Input \rightarrow	FBD display	Parameter display		
		$\begin{array}{ll} \hline \text { B003 } & \text { G01 } \\ \text { Ax= A01 V } \end{array}$		Analog Input
Parameter \rightarrow	$\mathrm{Par}{ }^{\perp}$ 」	$G=02.50 \mathrm{~V}$	\leftarrow	Reference

B003（G01）output ON when the value of A01 is not low than 2．50；
Parameter display current value of Ax when running mode；

Analog Comparison Mode 6

B003（G01）output ON when the value of A01 is equal to 2．50；
Parameter display current value of Ax when running mode；

Analog Comparison Mode 7

Enable Input \rightarrow	FBD display	Parameter display		
		$\begin{array}{ll} \hline \mathrm{B003} & \mathrm{G} 01 \\ \mathrm{Ax}=\mathrm{A} 01 \mathrm{~V} & \\ \hline \end{array}$		Analog Input
Parameter \rightarrow	Par ${ }^{\perp}$ 」	$G=02.50 \mathrm{~V}$	\leftarrow	Reference

B003（G01）output ON when the value of A01 is not equal to 2．50；
Parameter display current value of Ax when running mode；

AS (ADD-SUB) function block

There is a maximum of 250 AS (Addition and Subtraction) function blocks under FBD mode, and the function is same as Ladder mode.

Compute formula: $A S=V 1+V 2-V 3$

Parameters V1, V2, and V3 can be a constant or other function current value. The output coil will be set to 1 when the result is overflow.

Example:
AQ01 $=$ AS01 $=100+$ A01 - V02

FBD display:

Parameter display:

	Stopping	Running		
Preset V1 \rightarrow	B001 AS01	$\text { B001 } 00404 \text { AS01 }$	\leftarrow \leftarrow	AS output value Current value V1
Preset V1 \rightarrow	V1= 00100	$\mathrm{V}=00100$	-	
Preset V2 \rightarrow	$\mathrm{V} 2=\mathrm{A} 01$	$V 2=00424$	\leftarrow	Current value V2
Preset V3 \rightarrow	V3= V02	V3= 00120	\leftarrow	Current value V3

AS and V1~V3, values range from -32768~32767

MD (MUL-DIV) function block

There is a maximum of 250 MD (Multiplication and Division) function blocks under FBD mode, and the function is same as Ladder mode.

Compute formula: $M D=V 1 * V 2 / V 3$
Parameters V1, V2, and V3 can be a constant or other function current value. The output coil will be set to 1 when the result is overflow or parameter V3 is zero.

Example:
AQ02 $=$ MD01 $=$ AT01 $* 15 / 100$

FBD display:

Parameter display:

	Stopping	Running		
Preset V1 \rightarrow	B002 MD01	$\begin{array}{rrr} \mathrm{B} 00200184 & \mathrm{MD} 01 \\ \mathrm{~V} 1=01227 & \end{array}$	\leftarrow \leftarrow	MD output value Current value V1
Preset V2 \rightarrow	, 0		\leftarrow	Current value V2
Preset V3 \rightarrow	$\mathrm{V} 3=00100$	V3= 00100	\leftarrow	Current value V3

MD and V1~V3, values range from -32768~32767

PID (Proportion- Integral- Differential) function block

There is a maximum of 30 PI (PID) function blocks under FBD mode, and the function is same as Ladder mode.

PID computes formula:

$$
\begin{aligned}
& E V_{n}=S V-P V_{n} \\
& \Delta P I=K_{P}\left\{\left(E V_{n}-E V_{n-1}\right)+\frac{T_{s}}{T_{I}} E V_{n}+D_{n}\right\} \\
& D_{n}=\frac{T_{D}}{T_{S}}\left(2 P V_{n-1}-P V_{n}-P V_{n-2}\right) \\
& P I=\sum \Delta P I
\end{aligned}
$$

Parameters can be constant or other function current value. The output coil will turn ON when either T_{S} or K_{P} is 0 .

Example:

FBD display:

Parameter display:

	Parameter display 1	Parameter display 2	
PID current value \rightarrow	B003 00738 PI01	B003 PI01	
Destination value \rightarrow	SV= 00800	$\mathrm{Kp}=00100$	\leftarrow Proportional gain
Test value \rightarrow	$\mathrm{PV}=00770$	$\mathrm{Ti}=0010.0 \mathrm{Sec}$	\leftarrow Integration time
Sampling time \rightarrow	$\mathrm{Ts}=002.00 \mathrm{Sec} 1$	$\mathrm{Td}=001.10 \mathrm{Sec} 2$	\leftarrow Differential time

※ Display PID current value when running mode;
※ Test value (PV) display code A02 when stopping mode, and display current value (as example PV=00770) when running mode.
$※$ Press "SEL $+\longleftrightarrow$ " button can convert between display1 and display2.
※ More information about PID function to see Chapter 4: Relay Ladder Logic Programming—PID.

MX (Multiplexer) function block

There is a maximum of 250 MX (Multiplexer) function blocks under FBD mode, and the function is same as Ladder mode.

This special function transmits 0 or one of 4 preset values to MX current value memory by selection control coils S1 and S2. The MX function enables simple operations to be carried out on integers.
The preset value V1~V4 can be constant or other function current value.
The table below describes the relationship between parameter and MX current value.

Control status		MX output coil	MX output value
MX disable			
SX enable $=0, \mathrm{~S} 2=0$	0	$\mathrm{MX}=0$	
	$\mathrm{~S} 1=0, \mathrm{~S} 2=1$	1	$\mathrm{MX}=\mathrm{V} 0$
	$\mathrm{~S} 1=1, \mathrm{~S} 2=0$	1	$\mathrm{MX}=\mathrm{V} 1$
	$\mathrm{~S} 1=1, \mathrm{~S} 2=1$	1	$\mathrm{MX}=\mathrm{V} 2$

Example:

FBD display:

Enable Input	\rightarrow	I03T	7 B004
Selection coil S1	\rightarrow	N03-	
Selection coil S2	\rightarrow	N04- ${ }^{\text {a }}$	FM04
Parameter	\rightarrow	$\mathrm{Par}^{\perp} \mathrm{MX}$	」

Parameter display:

※ Display MX current value when running mode;
※ Preset Value V3, display code A03 when stopping mode and display current value (as example V3=00111) when running mode;
$※$ Press "SEL $+\hookleftarrow \rightarrow$ " button can convert between display1 and display2.
※ MX and V0~V3, values range from -32768~32767

AR (Analog-Ramp) function block

There is a maximum of 30 AR (analog ramp control) function blocks under FBD mode, and the function is same as Ladder mode.
(1)AR mode1

Function description:
AR will keep the current level at "StSp + Offset "B"" for 100 ms when it's enabled. Then the current level runs from StSp + Offset "B" to target level at enactment Rate. If St is set, the current level decreases from current level to level StSp + B at enactment Rate. Then AR holds the level StSp + Offset "B" for 100 ms . After 100 ms , AR current level is set to offset " B ", which makes AR current value equals 0 .

AR current value: $0 \sim 32767$
Level1:-10000~20000
Level2:-10000~20000
MaxL (max level):-10000~20000
Start/Stop level (StSp): $0 \sim 20000$
stepping rate (rate): $1 \sim 10000$
Proportion (A): 0~10.00
Excursion (B): $-10000 \sim 10000$

$$
A R _c u r r e n t _v a l u e=\left(A R _c u r r e n t _l e v e l-B\right) / A
$$

The parameters can be constant or other function current value.

Sel	Selection level \quadSel = 0: target level = Level1 Sel = 1: target level = Level2 ※ MaxL is used as target level if the selected level is bigger than MaxL.
St	Selection stop coil. The St's state becomes from 0 to 1 will startup the current level decrease to start/stop level (StSp + excursion "B"), and then keep this level for 100ms. Then AR current level is set to B which will make AR current value equals 0.
Output coil	The output coil turns ON when Proportion (A) is 0.

Timing diagram for AR

Example:

FBD display:

Parameter display:

	Parameter display 1	Parameter display 2	
AR current value \rightarrow	B005 00528 AR01	$S=00500$ AR01	\leftarrow Start/Stop level
Preset level1 \rightarrow	L1 $=05000$	$R=00010$	\leftarrow Stepping rate
Preset level2 \rightarrow	L2 $=08000$	$A=01.00$	\leftarrow Proportion value
Max level \rightarrow	$M L=10000 \quad 1$	$B=00020 \quad 2$	\leftarrow Excursion value

※ Display AR current value when running mode;
※ Press "SEL $+\hookleftarrow \rightarrow$ " button can convert between display1 and display2.
(2)AR mode2

Function description:
AR will vary form 0 to current level at a preset rate when it's enabled. Base on the state of Sel1 and Sel2, Current level will change to other preset level at the preset rate. When AR is disabled, current output vary to 0 immediately.

AR current value: $0 \sim 32767$
Level0:0~32767
Level1:0~32767
Level2:0~32767
Level3:0~32767
MaxL:0~32767
Ta: $0 \sim 3276.7$

The rate designed by user: Rate $=\frac{M a x L}{T a}$. The table below describes detail information of each parameter:

	$\mathrm{S} 1=0, \mathrm{~S} 2=0$: target level = Level 0; Sel1 Sel2
	$\mathrm{S} 1=0, \mathrm{~S} 2=1$: target level = Level 1; $\mathrm{S} 1=1, \mathrm{~S} 2=0$: target level = Level 2; $\mathrm{S} 1=1, \mathrm{~S} 2=1$: target level = Level 3;
MaxL	MaxL is used as target level if the selected level is bigger then MaxL.
Ta	The result of MaxL divided by Ta is the change rate from current level to target level.
Output coil	The output coil turns ON when A is 0.

Timing diagram for AR

Example:
Display AR current value when running mode;
}

DR (Data-Register) function block

There is a maximum of 240 DR (data register) function blocks under FBD mode, and the function is same as Ladder mode.

The DR function is transferring data. DR sends data from prevention registers to current register and output coil Bxxx ON when it's enabled. DR holding the out value and output coil Bxxx OFF when it's disabled.
The data can be signed or unsigned by Operation>>module system set...menu selection from the SG2 Client software or keypad set.

The data registers from DR65 to DRF0 will be kept when the smart stop or powers down.
The last 40 DR that from DRC9 to DRF0 are special data register, more information to see Chapter 3 Program Tools—Data Register Set.

Example:
Setting I02 ON, B001 (DR01) output (A05*1/10) count value;
Setting I02 OFF, B001 (DR01) output 0;

MU (Modbus) function block

There is a maximum of 250 MU (Modbus) function blocks under FBD mode, can be set mode 1~5 and the function is same as Ladder mode.

Remote IO and IO Link are precedence than MU. MU is executed when the system setting is N (No Remote IO) and ID isn't 0 .

Function mode corresponding communication function code:

mode	Communication function code
1	03 (read registers)
2	06 (write single register)
3	10 (write multiple registers)
4	01 (read coils)
5	05 (write single coil)

※ The max data length for Mode 1 and 3 is 25 words. The max data length for Mode 4 is 400 bits.

The coil used in MU function:

M3D: Received	M3D is set to ON after received, then check-up for error. Transferring data to target address if there is no error.
M3E: Error flag	communication error flag
M3F: Time out flag	M3F is set to 1 when the time from after sending to start receiving is longer than setting, and M3D also be set to 1. M3F is automatically reset if M3D reset.

The time out time is depending communication baud rate as shown in the table below:

Baud rate (bps)	Time out (ms)
$4800, ~ 9600,19200,38400$	125
57600	100
115200	80

※ More information about communication to see: Chapter 720 Points RS485 type Models Instruction.

MU mode1: Read Registers

Setting communication address is constant:

Address is constant 0003,
Data length is fixed at 1word,
Send data:
010300030001 CRC16;

Received response form slave1:
010302 data1 data2 CRC16;
Saving date to DRE0: DRE0 = data1~2

Parameter display

B001	MU01		
ID=01			Slaver ID
V1 $=0003$		\leftarrow	Register address
V2 $=$ DRE0			\leftarrow

Setting communication address is data register DR:

Setting address DR03=0001,
Setting data length DR04=0002,
Send data:
010300010002 CRC16;

Received response from slave1:
010304 data1 data2 data3 data4 CRC16;
Saving data to DRE0~DRE1:
DRE0 = data1~2, DRE1 = data3~4
※ the max length of data is 25 .

Parameter display

B001	MU01		
ID=01		\leftarrow	Slaver ID
V1=DR03		\leftarrow	Register address
V2=DRE0		\leftarrow	Saving data address

MU mode2: Write single register

Setting communication address is constant:

Parameter display

B001	MU01
$\mathrm{ID}=01$	
$\mathrm{~V} 1=0003$	
$\mathrm{~V} 2=\mathrm{DRE} 0$	

$\leftarrow \quad$ Slaver ID
\leftarrow Register address
\leftarrow Source data address

Setting communication address is data register DR:

Setting address DR03=0001,
Setting data DRE0=1234 (hex: 04D2),
Send data:
0106000104 D2 CRC16;

Received response from slave1:
0106000104 D2 CRC16;

Parameter display

B001	MU01		
ID=01			Slaver ID
V1=DR03		\leftarrow	Register address
V2=DRE0			\leftarrow
		Source data address	

MU mode3: Write Multiple Registers

Setting communication address is constant:

Address is constant 0003, Data length is fixed at 1word, Setting data DRE0=1234 (hex: 04D2), Send data:
0110000300010204 D2 CRC16;

Received response from slave1:
011000030001 CRC16;

Parameter display

B001	MU01		
ID $=01$			Slaver ID
V1 $=0003$		\leftarrow	Register address
V2 $=$ DRE0			\leftarrow

Setting communication address is data register DR:

Parameter display

B001	MU01
ID=01	
V1=DR03	
V2=DRE0	

\leftarrow Slaver ID
\leftarrow Register address
\leftarrow Source data address

MU mode4: Read Coils

Setting communication address is constant:

Address is constant 32 (hex: 0020),
Data length is fixed at 16 (hex: 10H, 1word),
Send data:
010100200010 CRC16;

Received response from slave1:
010102 data1 data2 CRC16;
Saving data to DRE0: DRE0 = data1~2

Parameter display

B001	MU01		
ID=01		\leftarrow	Slaver ID
V1 $=0003$		\leftarrow	Register address
V2=DRE0			\leftarrow
		Saving data address	

Setting communication address is data register DR:

Setting address DR03=0001,
Setting data length R04=0015 (hex: 000F);
Send data:
0101000100 0F CRC16;

Received response from slave1:
010102 data1 data2 CRC16;
Saving data to DRE0: DRE0 = data1~2
※ the max length of data is 400 .

MU mode5：Write single coil

Setting communication address is constant：

Address is constant 0003，
Setting data DRE0＝65280（hex：FF00），
Send data：
01050003 FF 00 CRC16；

Received response from slave1：
01050003 FF 00 CRC16；

Mode5	FBD display	
Enable Input	「	$7 \mathrm{B001}$
	B002才 05	｜
	S \rightarrow	1－001
Parameter	Par ${ }^{\text {M }}$	」

Setting communication address is data register DR：

Setting address DR03＝0001， Setting data DRE0＝65280（hex：FF00）， Send data： 01050001 FF 00 CRC16；

Received response from slave1：
01050001 FF 00 CRC16；

Mode5	FBD display	
	Γ	$7 \mathrm{B001}$
Enable Input	B002 05	｜
	$1 \mathrm{~S} \rightarrow$	1Q01
Parameter	Par ${ }^{\perp} \mathrm{MU}$	」

Parameter display

B001	MU01
ID＝01	
V1＝DR03	
V2＝DRE0	

$\leftarrow \quad$ Slaver ID
\leftarrow Register address
\leftarrow Source data address

Parameter display

B001	MU01		
ID＝01		\leftarrow	Slaver ID
V1 $=0003$		\leftarrow	Register address
V2 $=$ DRE0		\leftarrow	Source data address

Chapter 7: Hardware Specification

Normal Specification 190
Product Specifications 191
Power Specifications 192
Normal model machine Specifications 192
12V DC model Specifications 193
24V AC model Specifications 193
Power circuitry diagram 194
Input Specifications 195
100~240V AC model 195
24 V AC model 195
24 V DC, 12 I/O model 196
24 V DC, 20 I/O model 197
12V DC, 12 I/O model 198
12V DC, 20 I/O model 199
Output Specifications 200
Output Port wiring notice 200
Light Load 200
Inductance Load 201
Life of relay 201
Size diagram of SG2 202

Normal Specification

Content		Specification
Mode of user program		Ladder \& FBD
Environmental	Operation temperature	-4° to $131^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
	Storage temperature	-40° to $158^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $70^{\circ} \mathrm{C}$)
	Maximum Humidity	90\% (Relative, non-condensing)
	Operation Gas	No corrosive gases
Main machine	Maximum Vibration	0.075 mm amplitude, 1.0 g acceleration according to IEC60068-2-6
	Maximum Concussion	peak value 15 g , 11 ms according to IEC60068-2-27
Maximum Noise	ESD	Contact $\pm 4 \mathrm{KV}$, air discharge $\pm 8 \mathrm{KV}$
	EFT	Power AC: $\pm 2 \mathrm{KV}$ DC: $\pm 1 \mathrm{KV}$
	CS	$0.15 \sim 80 \mathrm{MHz} \quad 10 \mathrm{~V} / \mathrm{m}$
	RS	$80 \sim 1000 \mathrm{MHz} \quad 10 \mathrm{~V} / \mathrm{m}$
	EMI	EN55011 class B
installation	Enclosure Type	IP20
	Mounting mode	Direct Mounting or DIN-rail (35mm) Mounting
	Direction	According to chapter 2: Installing
Wiring		AWG $14 / \psi 2.6 \mathrm{~mm}^{2}$
size		$2 \times 90 \times 59.6 \mathrm{~mm}(\mathrm{~W} \times \mathrm{L} \times \mathrm{H})$ Din rail $72 \times 126 \times 59.6 \mathrm{~mm}(\mathrm{~W} \times \mathrm{L} \times \mathrm{H})$ Direct

Product Specifications

	MODE	Input Power				$\begin{gathered} \text { Input } \\ \text { point } \end{gathered}$	Output point		Analog input	RTC	$\begin{gathered} \text { LCD } \\ \text { keypad } \end{gathered}$	expansion	1 KHz High speed input	PWM	$\begin{aligned} & \text { I/O } \\ & \text { LINK } \end{aligned}$
		$\begin{array}{\|c\|} \hline \mathrm{AC} \\ 100 \sim \\ 240 \mathrm{~V} \end{array}$	$\begin{gathered} \mathrm{AC} \\ 24 \mathrm{~V} \end{gathered}$	$\begin{array}{\|c} \hline \text { DC } \\ 24 \mathrm{~V} \end{array}$	$\begin{array}{\|c} \hline \text { DC } \\ 12 \mathrm{~V} \end{array}$										
$\left.\begin{gathered} 10 \\ / \\ 12 \\ \text { points } \end{gathered} \right\rvert\,$	Expansion models														
	10HR-A	O				6	4	relay		©	\bigcirc	©			
	12HR-D			\bigcirc		8*	4	relay	2	\bigcirc	\bigcirc	©	\bigcirc		
	12HT-D			©		8*	4	transistor	2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	12HR-12D				()	8*	4	relay	2	\bigcirc	\bigcirc	\bigcirc	O		
	12HR-24A		\bigcirc			8	4	relay		\bigcirc	\bigcirc	\bigcirc			
	OEM "Blind" Models, No Keypad, No Display														
	10KR-A	O				6	4	relay		O		O			
	12KR-D			O		8*	4	relay	2	\bigcirc		O	\bigcirc		
	12KT-D			©		8*	4	transistor	2	\bigcirc		\bigcirc	\bigcirc	0	
	12KR-12D				()	8*	4	relay	2	\bigcirc		\bigcirc	\bigcirc		
	12KR-24A		O			8	4	relay		O		O			
	OEM "Baseboard" Models, No Keypad, No Display, No Expansion														
	10CR-A	\bigcirc				6	4	relay		\bigcirc					
	12CR-D			\bigcirc		8*	4	relay	2	\bigcirc			\bigcirc		
	12CT-D			©		8*	4	transistor	2	\bigcirc			\bigcirc	©	
	12CR-12D				\bigcirc	8*	4	relay	2	\bigcirc			\bigcirc		
$\begin{array}{\|c\|} 20 \\ \text { points } \end{array}$	Expansion models														
	20HR-A	O				12	8	relay		\bigcirc	©	\bigcirc			
	20HR-D			\bigcirc		12*	8	relay	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	20HT-D			©		12*	8	transistor	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	
	20HR-12D				\bigcirc	12*	8	relay	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	20HR-24A		O			12	8	relay		\bigcirc	©	\bigcirc			
	OEM "Blind" Models, No Keypad, No Display														
	20KR-A	(12	8	relay		©		©			
	20KR-D			©		12*	8	relay	4	\bigcirc		\bigcirc	\bigcirc		
	20KT-D			©		12*	8	transistor	4	\bigcirc		\bigcirc	\bigcirc	\bigcirc	
	20KR-12D				()	12*	8	relay	4	\bigcirc		\bigcirc	O		
	20KR-24A		(0)			12	8	relay		©		\bigcirc			
	OEM "Baseboard" Models, No Keypad, No Display, No Expansion														
	20CR-A	O				12	8	relay		\bigcirc					
	20CR-D			©		12*	8	relay	4	\bigcirc			\bigcirc		
	20CT-D			©		12*	8	transistor	4	\bigcirc			\bigcirc	\bigcirc	
	20CR-12D				()	12*	8	relay	4	©			©		
	RS485 communication models														
	20VR-D			©		12*	8	relay	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc
	20VT-D			©		12*	8	transistor	4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
	20VR-12D				()	12*	8	relay	4	©	\bigcirc	©	©		©
	8ER-A	O				4	4	relay							
	8ER-D			\bigcirc		4	4	relay							
	8ET-D			©		4	4	transistor							
	8ER-24A		O			4	4	relay							
	4AI			\bigcirc		4*			4						
	4PT			\bigcirc		4*			4						
	2AO			\bigcirc			2	analog							

Power Specifications

Normal model machine Specifications

content	$\begin{aligned} & \hline \text { SG2-10HR-A } \\ & \text { SG2-10KR-A } \\ & \text { SG2-10CR-A } \end{aligned}$		$\begin{aligned} & \text { SG2-20HR-A } \\ & \text { SG2-20KR-A } \end{aligned}$		$\begin{aligned} & \hline \text { SG2-20HR-D } \\ & \text { SG2-20KR-D } \\ & \text { SG2-20HT-D } \\ & \text { SG2-20KT-D } \end{aligned}$		$\begin{aligned} & \text { SG2-12 } \\ & \text { SG2-12 } \\ & \text { SG2-12 } \\ & \text { SG2-1: } \\ & \text { SG2-1 } \\ & \text { SG2-1 } \end{aligned}$	$\begin{aligned} & \text { 2HR-D } \\ & 2 \mathrm{KR}-\mathrm{D} \\ & \hline 2 \mathrm{CR}-\mathrm{D} \\ & \hline 12 \mathrm{HT}-\mathrm{D} \\ & \hline 12 \mathrm{KT}-\mathrm{D} \\ & \text { 2CT-D } \end{aligned}$
operation Power range	AC 100~240V		AC 100~240V		DC 24 V		DC	24 V
Voltage Rating	AC 85~265V		AC 85~265V		DC 20.	4~28.8V	DC 20.4	4~28.8V
Frequency Rating	$50 / 60 \mathrm{~Hz}$		$50 / 60 \mathrm{~Hz}$					
$\begin{aligned} & \text { Frequency } \\ & \text { range } \end{aligned}$	$47 \sim 63 \mathrm{~Hz}$		47~63Hz					
instantaneous power down time allowable	$\begin{gathered} 10 \mathrm{~ms} \text { (half cycle) / } \\ 20 \text { times } \\ \text { (IEC61131-2) } \end{gathered}$		$\begin{gathered} \hline 10 \mathrm{~ms}(\text { half cycle) } \\ 20 \text { times } \\ \text { (IEC61131-2) } \end{gathered}$		$1 \mathrm{~ms} / 10$ times (IEC61131-2)		10ms/10times (IEC61131-2)	
fuse	Need connect a fuse or breaker of current 1A		Need connect a fuse or breaker of current 1A		Need connect a fuse or breaker of current 1A		Need connect a fuse or breaker of current 1A	
Isolation	None		None		None		None	
Current average	AC 110V	AC 220V	AC 110V	C 220V	DC 24V	DC 28.8 V	DC 24V	C 28.8 V
	$\begin{array}{\|c} \hline \text { All inputs } \\ \text { and relays } \\ \text { are ON } \\ 90 \mathrm{~mA} \end{array}$	All inputs and relays are ON 90 mA	All inputs and relays are ON 100 mA	All inputs and relays are ON 100 mA	All inputs sand relays are ON 145 mA	All inputs and relays are ON 185 mA	All inputs and relays are ON 115 mA	All inputs nd relays are ON 125 mA
	$\begin{array}{\|l\|} \hline \text { All inputs } \\ \text { and relays } \\ \text { are OFF } \\ 85 \mathrm{~mA} \end{array}$	All inputs and relays are OFF 85 mA	All inputs and relays are OFF 90 mA	All inputs and relays are OFF 90 mA	All inputs and relays are OFF 80 mA	All inputs and relays are OFF 120 mA	All inputs and relays are OFF 75 mA	All inputs and relays are OFF 85 mA
Consume power	7.5 W		12.5 W		5 W		4.5 W	

12V DC model Specifications

content	SG2-12HR-12D		SG2-20HR-12D	
Voltage Rating	DC 12 V		DC 12 V	
operation Power range	DC 10.4~14.4 V		DC 10.4~14.4 V	
instantaneous power down time allowable	$10 \mathrm{~ms} / 10$ times (IEC 61131-2)		1ms/ 10 times (IEC 61131-2)	
fuse	Need connect a fuse or breaker of Current 1A		Need connect a fuse or breaker of current 1A	
Isolation	None		None	
Current average	DC 12V	DC 14.4V	DC 12V	DC 14.4V
	All inputs and relays are ON 195 mA	All inputs and relays are ON 195 mA	All inputs and relays are ON 265mA	All inputs and relays are ON 265 mA
	All inputs and Relays are OFF 160 mA	All inputs and Relays are OFF 160 mA	All inputs and Relays are OFF 200 mA	All inputs and Relays are OFF 200 mA
Consume power	2.5 W		3.5 W	

24V AC model Specifications

content	$\begin{aligned} & \text { SG2-12HR-24A } \\ & \text { SG2-12KR-24A } \end{aligned}$		$\begin{aligned} & \text { SG2-20HR-24A } \\ & \text { SG2-20KR-24A } \end{aligned}$	
Voltage Rating	AC 24 V		AC 24 V	
operation Power range	20.4~28.8V AC		20.4~28.8V AC	
instantaneous power down time allowable	10 ms (half cycle) / 20 times		10 ms (half cycle) / 20 times	
fuse	Need connect a fuse or breaker of Current 1A		Need connect a fuse or breaker of current 1A	
Isolation	None		None	
Current average	AC 24 V	AC 28.8 V	AC 24 V	AC 28.8 V
	All inputs and relays are ON 270 mA	All inputs and relays are ON 250 mA	All inputs and relays are ON 290 mA	All inputs and relays are ON 260 mA
	All inputs and Relays are OFF 160 mA	All inputs and Relays are OFF 160 mA	All inputs and Relays are OFF 200 mA	All inputs and Relays are OFF 200 mA
Consume power	6.5 W		7 W	

Power circuitry diagram

1) $\mathrm{AC} 10 / 20$ points

2) $\mathrm{DC} 12 \mathrm{~V}, \mathrm{DC} 24 \mathrm{~V}$

3) Mainframe, expansion and communication

Input Specifications

100~240V AC model

content	$\begin{aligned} & \text { SG2-10HR-A } \\ & \text { SG2-10CR-A } \end{aligned}$	SG2-20HR-A \& SG2-20KR-A	
Input circuitry	I01~106	I01~I09, I0A, I0B, I0C	
number	6(digital input)	12(digital input)	
Signal current input	AC 110 V AC 220 V 0.66 mA 1.3 mA	$\begin{gathered} \hline \text { AC } 110 \mathrm{~V} \\ 0.55 \mathrm{~mA} \end{gathered}$	$\begin{array}{r} \hline \text { AC } 220 \mathrm{~V} \\ 1.2 \mathrm{~mA} \end{array}$
ON current input	> AC $79 \mathrm{~V} / 0.41 \mathrm{~mA}$	> AC $79 \mathrm{~V} / 0.4 \mathrm{~mA}$	
OFF current input	< AC $40 \mathrm{~V} / 0.28 \mathrm{~mA}$	$<\mathrm{AC} 40 \mathrm{~V} / 0.15 \mathrm{~mA}$	
wire length	</ = 100 m	</ = 100 m	
response time of input	On=>Off	On=>Off	
	Typical 50/60 Hz 50/45 ms(AC 110 V)	Typical $50 / 60 \mathrm{~Hz}$	50/45 ms(AC 110 V)
	Typical 50/60 Hz 90/85 ms(AC 220 V)	Typical $50 / 60 \mathrm{~Hz}$	90/85 ms(AC 220 V)
	Off=>On	Off=>On	
	Typical 50/60 Hz 50/45 ms(AC 110 V)	Typical 50/60 Hz	50/45 ms(AC 110 V)
	Typical 50/60 Hz 22/18 ms(AC 220 V)	Typical 50/60 Hz	22/18 ms(AC 220 V)

24 V AC model

content	SG2-12HR-24A	SG2-20HR-24A
Input circuitry	I01~I06, I09,I0A	I01~I09, I0A, I0B, I0C
number	8(digital input)	12(digital input)
Signal current input	3 mA	3 mA
ON current input	> AC $14 \mathrm{~V} / 3 \mathrm{~mA}$	> AC $14 \mathrm{~V} / 3 \mathrm{~mA}$
OFF current input	< AC $6 \mathrm{~V} / 0.85 \mathrm{~mA}$	< AC $6 \mathrm{~V} / 0.85 \mathrm{~mA}$
wire length	</ = 100 m	</ = 100 m
response time of input	On=>Off	On=>Off
	Typical 50/60 Hz 90/90ms	Typical 50/60 Hz 90/90ms
	Off=>On	Off=>On
	Typical 50/60 Hz 90/90ms	Typical 50/60 Hz 90/90ms

content	SG2-12HR-D \& SG2-12KR-D \& SG2-12CR-DSG2-12HT-D \& G 2 -12KT-D \& SG2-12CT-D			
	Normal digital input	High speed input	Analog input used as normal digital input	Analog input
Input circuitry	I03~106		WCC	
number	4	2	2	2
$\begin{aligned} & \text { Signal } \\ & \text { current } \\ & \text { input } \end{aligned}$	$3.2 \mathrm{~mA} / 24 \mathrm{~V}$ DC	$3.2 \mathrm{~mA} / 24 \mathrm{~V}$ DC	$0.63 \mathrm{~mA} / 24 \mathrm{~V}$	$<0.17 \mathrm{~mA} / 10 \mathrm{~V}$
ON current input	$>1.875 \mathrm{~mA} / 15 \mathrm{~V}$	>1.875mA/15V	$>0.161 \mathrm{~mA} / 9.8 \mathrm{~V}$	
$\begin{aligned} & \text { OFF } \\ & \text { current } \\ & \text { input } \end{aligned}$	$<0.625 \mathrm{~mA} / 5 \mathrm{~V}$	$<0.625 \mathrm{~mA} / 5 \mathrm{~V}$	$<0.085 \mathrm{~mA} / 5 \mathrm{~V}$	
wire length	</ = 100 m	</ = 100 m	</ = 100 m	< / $=30 \mathrm{~m}$ (shield wire)
response	On=>Off	On=>Off	On=>Off	
time of	3ms	0.3 ms	Typical: 5ms	,
input	Off=>On	Off=>On	Off=>On	
	5 ms	0.5 ms	Typical: 3ms	
Input voltage		1		$0 \sim 10 \mathrm{~V}$ DC
Precision class	\ldots	,		0.01 V DC
bit of conversion				12
error			,	$\pm 2 \% \pm 0.12 \mathrm{~V}$
Conversion time				1 cycle
sensor resistance		-		<1K ohm

12V DC, 12 I/O model

| content | SG2-12HR-12D | | Analog input used |
| :--- | :---: | :---: | :---: | :---: | :---: |
| as normal digital | | | |
| input | | | |\quad Analog input

Output Specifications

content		relay	transistor
output circuitry		Extern power SG2	
Extern power		Less than AC265, DC30V	23.9~24.1V
circuitry isolation		mechanism isolation	Photo couplers isolation
Maximal Load	Resistive	8A/point	0.3A/point
	Inductive	-	-
	light	200W	10W/DC 24 V
Open drain current		-	<10uA
Minimum Load		-	-
Response time	$\mathrm{OFF} \longrightarrow \mathrm{ON}$	15 ms	25 us
	$\mathrm{ON} \longrightarrow \mathrm{OFF}$	15 ms	Less than 0.6 ms

Output Port wiring notice

Light Load

The surging current will appear at the moment of the lamp is conducting; it may 10~20 times the rated current for almost 10 ms when filament is turning-on. A distributaries resistance or restricted current resistance is added at output port to reduce the surging problem.
There is a little current makes light shine
faintness, so the value of resistance must be
careful.

Inductance Load

There will be a surging voltage (KV) when the inductance load switches between ON and OFF, especially for the relay model. The methods to different power mode to absorb the surging voltage are shown below.

Please do can't use capacitance alone as absorbing as shown below.

Life of relay

Life Expectancy

※ The data of picture above is standard, but the life of relay is influenced by the temperature of operation environmental.
※ The life is more than 100 K times if the current is less than 2 A .

Power mode

Mode	Input/Output
DC +12 V	AC $100 \sim 240 \mathrm{~V} / \mathrm{DC}+12 \mathrm{~V}$
DC +24 V	AC $100 \sim 240 \mathrm{~V} /$ DC +24 V

Accessory

MODE	description
PM05	memory cartridge
SG2 Client	SG2 program software

Size diagram of SG2

10/12 points

20 points

Chapter 8: 20 Points RS485 type Models Instruction

Communication function 204
Detail instruction 206
Remote IO function 206
IO Link Function. 207
MU instruction (Modbus RTU master) 209
Modbus RTU slave function 211
SG2 Modbus protocol 211

Only SG2-20VR-D, SG2-20VT-D, SG2-20VR-12D do have RS485 communication function.

Communication function

There are many parameters needed to be set before user uses the RS485 communication function. And there are two ways to set that parameter.
-. Setting parameters via SG2 Client software:

1. In SG2 Client Soft Select Operation>>Module System Set;
2. Open the dialog box as show below, setting parameters SET ID, Remote I/O and RS485 Set.

- Setting parameters via keypad button on SG2.

1. Press button to enter main menu.
2. Press UP/DOWN to choose SET menu, and press OK to enter it.
3. Press UP/DOWN makes the LCD to display the options as show below, setting parameters ID SET, REMOTE I/O and RS485 SET.

4. Parameter RS485 SET, high bit means communication format and low bit means Baud Rate.
5. Press OK button to save setting.

Function parameters:

ID SET	01	\rightarrow	ID setting (00~99)			
	REMOTE I/O	N	\rightarrow	Remote I/O Mode	(N: none	M: Master

Function description:

Function	ID SET	REMOTE I/O	Description
Remote IO function	$00 \sim 99$	$\mathrm{M} \& \mathrm{~S}$	Up to 2 additional SG2 units can be configured as Remote I/O nodes (master and slave);
IO Link function	$0 \sim 7$	N	Up to 8 additional SG2 units can be configured as IO Link and ID must be continuous 0~7;
MU instruction	$1 \sim 99$	N	MU can be enabled only when no remote IO function and IO Link function;
Modbus RTU slave	$1 \sim 99$	N	Modbus RTU slave is effective when no remote IO function, IO Link function and MU instruction;

Communication parameters:

Content	Data	Meaning
Format	0	8/N/2 Data 8bits, No Parity, 2 Stop bits.
	1	8/E/1 Data 8bits, Even Parity, 1 Stop bit.
	2	8/0/1 Data 8bits, Odd Parity, 1 Stop bit.
	3	8/N/1 Data 8bits, No Parity, 1 Stop bit.
Baud Rate	0	4800 bps
	1	9600 bps
	2	19200 bps
	3	38400 bps
	4	57600 bps
	5	115200 bps

※ SG2 default ID SET=1, and REMOTE I/O=N (no remote I/O).
※ SG2 RS485 port default communication format is 8/N/2 (Data 8bits, No parity, 2 stop bits) and baud rate is 38400bps.
※ The communication parameter setting takes effect after power up again.

Detail instruction

Remote IO function

Function Description:

Remote IO function can make one SG2 as master link to another SG2 as slaver; the master can perform its program, but the slaver can't. The ON/OFF state of the output coil Q in slaver will affect the ON/OFF state of the expansion output coil Y in master. In addition, the ON/OFF state of input coil X in master depends on the state of the input coil I in slaver.

I/O Address	Master	Slave
Input Coils	$\mathrm{I} 01 \sim \mathrm{I} 0 \mathrm{C}$	
Output Coils	$\mathrm{Q} 01 \sim \mathrm{Q} 08$	
Expansion Input Coils	$\mathrm{X} 01 \sim \mathrm{X} 0 \mathrm{C}$	$\mathrm{I} 01 \sim \mathrm{I} 0 \mathrm{C}$
Expansion Output Coils	$\mathrm{Y} 01 \sim \mathrm{Y} 08$	$\mathrm{Q} 01 \sim \mathrm{Q} 08$

Hardware Configuration:

1. Link two "V" type SG2 as illustration show below.
2. Assign left SG2 in the illustration as master.
3. Set another SG2 to Slave.

The program in master is valid, but the one in slaver is not.
Don't use expansion DI/DO modules, when remote I/O function is enabled.

Example:

Create a Ladder program as show below is written in master.

If input coils I02 and I03 in the Slaver turn ON. X02 and X03 in master will also turn ON due to the influence of I02 and I03 in the Slaver. Obviously, Y01 and Y02 in the master will turn ON, and then it causes Q1 and Q2 switching ON. See the consequence on the IO interface as shown in below.

I/O State on Slave Run mode

I .1234567890 A B C
Z.1234
Q.1234567890 A B C
MO 14: 42

I/O State on Master Run mode
X. 1234567890 ABC
Y. 1234567890 A B C EXE
2010.05.09

IO Link Function

Function Description:

Up to 8 SG2 units can be linked together as the IO Link Network. Each unit runs their own logic program; the ON/OFF state of input, output points, and Auxiliary Coils in each one can be assigned to "W Table", see the next page for more information. There must be one master ($\mathrm{ID}=00$) and several slavers with the continuous ID number starting from 01 in the network. The master one does not perform the IO Link function to the units with the ID behind the first broken number once the ID numbers are not continuous. For example, the slavers' ID are 01, 02, 04 and 05 , the master just can recognize only two Slaver, ID 01 and 02 , the ID 04 and 05 will be skipped.

One controller can use 8 IO Link (L01~L08). Only one IO Link instruction can work at Mode 1(Write mode), and the other IO Link instructions must be Mode 2 (Grab mode).

The Mode 1: Write the ON/OFF states of the selected coils into the chosen W elements. The available W elements in the mode 1 depend on the ID setting of that unit, refer to the table in the previous page for more information.

The Mode 2: Grab the states of the selected W elements, and substituting the state of the selected coil. If the select coil type is input coil I or X, coil status can't be changed by the state of W elements.

Hardware Configuration:

1. Link not more 8 RS485 type SG2 as show below.
2. Set all the SG2 in SET menu to No Remote IO.
3. Set those SG2's ID continuously $00,01,02 \ldots$ The max number of the ID is 07 .

- max. 8 points I/O send per stations
- Max 7*8 (=56) points I/O received per station

$$
\text { ID must set to be } 0,1,2, \ldots \text { (max to } 7 \text {) }
$$

Remote I/O disable

ID	Memory list location
0	W01~W08
1	W09~W16
2	W17~W24
3	W25~W32
4	$\mathrm{~W} 33 \sim \mathrm{~W} 40$
5	$\mathrm{~W} 41 \sim \mathrm{~W} 48$
6	$\mathrm{~W} 49 \sim \mathrm{~W} 56$
7	$\mathrm{~W} 57 \sim \mathrm{~W} 64$

Example:

1. Link 820 pointes RS485 models SG2 according to the steps of the Hardware Configuration.
2. Create a ladder program as show below in those 8 SG2.

3. Set L01 of the SG2 which's ID $=7$ as fellow illustration.

4. L01 of other 7 SG2 set as fellow illustration.

$\Gamma 2$	1
8-N01-08	1
\| $\uparrow \uparrow$	\|L01
LW57-64	」

5. Run program and let I01 of the SG2 which's ID $=7$ on. And M01~M08 will be on state.
6. You will find N01~N08 of other 7 SG2 will be controlled by the M01~M08 of the SG2 which's ID=7.

MU instruction (Modbus RTU master)

MU function performs Modbus RTU communication at RS485 port. There are 15 MU coils can be used in ladder mode, MU01~MU0F, and up to 250 MU function blocks diagram in FBD mode.

There can be several MU commands executed at the same time, but only one command can be performed, the rest are postponed until the performed one is accomplished.

Hardware Configuration:

1. Connect the RS485 port A on each SG2 unit together, also do it to port B, as shown in below figure.

2. Set SG2 in the SET menu to No Remote IO.
3. Set SG2 ID $=01 \sim 99$.

Function mode corresponding communication function code:

mode	Communication function code
1	03 (Read Registers)
2	06 (Write Single Register)
3	10 (Write Multiple Registers)
4	01 (Read Coils)
5	05 (Write Single Coil)

The M coil used for Modbus function:

Received (M3D)	M3D turns ON after received, then check-up for error. Transferring data to target address if there is no error.
Error flag (M3E)	communication error flag
Time out flag (M3F)	M3F turns ON when the master does not get any response from slaver within certain time. M3F will automatically reset if M3D reset.

The time of time out is depending communication baud rate as shown in the table below:

Baud rate (bps)	Time (ms)
$4800, ~ 9600,19200,38400$	125
57600	100
115200	80

In Ladder mode, there are 5 parameters in Modbus function as shown in below.

Chapter 820 Points RS485 type Models Instruction

| (1) | MU mode (1~5) |
| :--- | :--- | :--- |
| (2) | ID number of the target unit: range from 0 to127 |
| The address of target register in that unit: | |
| 1) address is assigned to a constant, range from 0000 to ffff; | |
| • Just do the read/write function to the register with one data | |
| length/address in mode 1 and 3. | |
| Do the read/write function to the coil with one data | |
| length/address in mode 4 and 5. | |
| 2) The address refers to the content of DR coil, and the value of coil | |
| behind this one determines how many register or coil will be read or | |
| write, see the next five pages for more information. | |

More description and examples to see Chapter5: Relay Ladder Logic Programming-MU (Modbus).
※ The max data length for Mode 1 and 3 is 25 words. The max data length for Mode 4 is 400 bits.

In FBD mode, program, edit and parameter display as shown blow;

Parameter display

B001	MU01		
ID $=01$		\leftarrow	Slaver ID
V1 $=0003$			\leftarrow
V2 $=$ DRE 0			

More description and examples to see Chapter6: FBD Block Diagram Programming-MU (Modbus) function block.
※ The max data length for Mode 1 and 3 is 25 words. The max data length for Mode 4 is 400 bits.

Modbus RTU slave function

Function Description:

SG2 unit can be controlled by the computer or other controller using the communication control. PC and other controller can read and write IO state, preset value of the elements and the setting of the unit. It also can use to read the current value of the element and control the Run/Stop mode of SG2. The maximum frame length in communication format is 128bytes.

Hardware Configuration:

1. Connect the RS485 port A on each SG2 unit together, also do it to port B, as shown in below figure.

2. Set SG2 in the SET menu to No Remote IO.
3. Set SG2 ID $=01 \sim 99$.

SG2 Modbus protocol

If SG2 receive a correct frame, it will carry out the command, it responses a correct frame to computer or other controller. If the command that SG2 received is incorrect, SG2 responses Exception code to computer or controller.

- Command format and Response format

- The Response command format, once SG2 receive an unexpected command.

Command Format:

Slave address	Function code		Data	CRC-16	Exception code
00 H : broadcast to all the drivers	01H	Read coils	For detail please refer register address	CRC verifying range contain Slave Address Function Code Exception Code	For detail, please refer Exception Code Instruction
01H: to the No. 01 driver	05H	Write single coil			
0FH: to the No. 15 driver	03H	Read registers			
10H: to the No. 16 driver	06H	Write single register			
....	10H	Write multiple registers			
63H: to the No. 99 driver	08H	diagnostic			

Exception Code

The controller responses the Exception Code and send Function Code added 80 H to main system if there is error happened.

Exception Code	Description
51	Frame error (Function Code error, Register Encoding error, Data Quantity Error)
52	Command can not be carried out in the RUN mode
53	Command can not be carried out in Cipher mode
54	Data value is over range
55	Reserved
56	Reserved
57	Other error
58	Commands do not match the present edited mode (Ladder or FBD)
59	Reserved

Register Address

Register address	Function	Usable command	
0000H~0016H	Coil status (word) address	03H, 06H, 10H	
0100H~012FH	Control register	03H, 06H, 10H	
0200H~0237H, 0260H	Current value of register	03H	
0300H~033BH	User character address	03H, 0H	
0400H~043EH	Preset value of register	03H, 10H	
0500H~05FFH	Coil status (bit) address	01H, 05H	
0600H~0630H	Coil status (word) address	03H, 06H, 10H	New command for SG2V3
0700H~072FH	Control register	03H, 06H, 10H	
0800H~11EFH	Current value of register	03H	
1200H~2703H	Preset value of register	03H, 06H, 10H	
2B00H~2E0FH	Coil status (bit) address	01H, 05H	

For more protocol information form 'R09-SG2-C03V04(SG2V3 Modbus protocol)'.

Chapter 9: Expansion Module

Summarize 214
Power 216
Size. 216
Digital IO Module 219
Analog Module 223
Analog Input Module 4AI 223
Temperature Input Module 4PT 224
Analog Output Module 2AO 225
Communication Module 227
MBUS Module 227
DNET Module. 230
PBUS Module 233
EN01 (TCP/IP) Module 236
GSM Module 242

Summarize

Digital Input/Output module: SG2-8ER-A, SG2-8ER-D, SG2-8ET-D, SG2-8ER-24A
Analog Input module: SG2-4PT, SG2-4AI
Analog Output module: SG2-2AO
Communication module: MBUS, DNET, PBUS, EN01(TCP/IP), GSM

SG2 V type, H type and K type can connect with expansion module. The maximal connectible number to the expansion module is: 3 Digital IO modes, 2 Analog Output modes, 2 Analog Input modules (one 4PT and one 4AI) and 1 Communication module. If the SG2 system is combined with digital IO, analog IO and communication module, it must follow the standard arrangement, "SG2 + digital IO module + analog IO module + communication module", otherwise it can not work correctly.
※ SG2-4AI must be the last one of analog module.

※ To all expansion modules (except EN01 and GSM), the connecting way is the same as shown in above picture.
※ The method of EN01 module and GSM module connecting to SG2 is used programming cable PL01.
※ The number of digital module must be the same with the setting of IO number in the system setting. Otherwise The SG2 will work incorrectly.
※ The scan time of SG2 main unit is about $2 \sim 20 \mathrm{~ms}$ without any expansion module. The scan time will be longer once connecting with expansion module. Connecting different expansion module gets different influence to scanning cycle. For details, see the table below.

Expansion module	Add single module Influence	Max connecting num	Max influence to scanning cycle
Digital I/O module	scanning cycle +1 ms	3	$+1 \mathrm{~ms}^{*} 3=3 \mathrm{~ms}$
4PT module	scanning cycle +7 ms	1	$+7 \mathrm{~ms}^{*} 1=7 \mathrm{~ms}$
2AO module	scanning cycle +8 ms	2	$+8 \mathrm{~ms}^{*} 2=16 \mathrm{~ms}$
4AI module	scanning cycle +13 ms	1	$+13 \mathrm{~ms} * 1=13 \mathrm{~ms}$
Communication module	scanning cycle $+4 \sim 16 \mathrm{~ms}$	5	$+4 \sim 16 \mathrm{ms*5}=20 \sim 80 \mathrm{~ms}$

* When setting the preset value of a function block via communication module, the scan time extends about 50ms.
* When SG2 connects with 4PT module, the corresponding 4PT register in SG2 unit will be updated, one scan cycle update one channel, so four Channels will be update within four scanning cycles.

There are two kinds of digital models: version 1.2 and version 3.0. They can connect with SG2 together.
There are 3 kinds of connecting way for expansion modules as shown below.
Only the EN01 and GSM module need to PL01 to connected with SG2.
Mainframe + digital IO (V1.2/V3.0) * 3 + 4AI*1+COMM.*1

※ digital IO: SG2-8ER-A, SG2-8ER-D, SG2-8ET-D, SG2-8ER-24A
※ Digital IO version can be either 1.2 or 3.0

Mainframe + digital IO (V1.2/V3.0) * 3 + 2AO*1/4PT*1

digital IO: SG2-8ER-A, SG2-8ER-D, SG2-8ET-D, SG2-8ER-24A
Digital IO version can be either 1.2 or 3.0
$※$
Either 2AO or 4PT.

Mainframe + digital IO (V3.0) * 3+2AO*2+4PT*1+4AI*1+ COMM.*1

※ digital IO: SG2-8ER-A, SG2-8ER-D, SG2-8ET-D, SG2-8ER-24A
$※$
V3.0: Digital IO version is V3.0

Power

The input voltage, current and power consumption for each expansion module is listed as below table:

Module	Voltage	Current	Power
SG2-MBUS	24 Vdc	80 mA	1.92 w
SG2-4AI	24 Vdc	70 mA	1.68 w
SG2-DENT	24 Vdc	50 mA	1.2 w
SG2-PBUS	24 Vdc	50 mA	1.2 w
SG2-EN01	24 Vdc	50 mA	1.2 w
SG2-2AO	24 Vdc	85 mA	2.04 w
SG2-4PT	24 Vdc	55 mA	1.32 w

Size

※ All the expansion modules' size is the same as shown below.

Installation

※ All the expansion modules (except EN01 and GSM module) installation method is the same as shown below.

		ann mm^{2}	$0.14 \ldots 1.5$	$0.14 \ldots 0.75$	$0.14 \ldots 2.5$
AWG	$26 \ldots 16$	$26 \ldots 18$	$26 \ldots 14$	$26 \ldots 14$	$26 \ldots 16$

DANGER:

HAZARDOUS VOLTAGE

Cut off all power before maintenance
Electric shock will result in death or serious injury.

Digital IO Module

The SG2 must set the number of expansion IO when connect with expansion module. The method of setting IO number is shown below.

1) Keypad

2) SG2 Client software

Expansion display State

Installation and Wiring

E type of expansion module: SG2-8ER-D/8ET-D, SG2-8ER-A/8ER-24A

Wiring

1) 24 V DC power input

SG2-8ER-D/8ET-D
2) $24 \mathrm{~V} / 100 \sim 240 \mathrm{~V}$ AC power input

SG2-8ER-A/8ER-24A
3) Relay Output

4) Transistor output

(1)-1A quick-blowing fuse, circuit-breaker or circuit protector
(2)-Surge absorber (43V DC)
(3)-Surge absorber (Input 24VAC:43V; Input 100~240VAC:430V AC)
(4)-Fuse, circuit-breaker or circuit protector
(5)-Inductive load
※ AC inductive load needs to connect Surge absorber in parallel way to absorb the noise if the SG2 output terminal is the relay type. DC inductive load needs parallel connect commute diode if the SG2 output terminal is the relay type. The specification of inverse voltage for commute diode should be more than $5 \sim 10$ times the rated current of the circuit, and the specification of positive current of diode should be more than load current. Inductive load needs parallel connect commute diode if the SG2 output is transistor.

Digital IO module and Analog module both have indicator light in orange color. The state of indicator light in different operation state is the same. The state of indicator light is shown below.

Analog Module

The maximal connectible number of Analog expansion module to SG2 is $2 * 2 \mathrm{AO}, 1 * 4 \mathrm{PT}$ and $1 * 4 \mathrm{AI}$.

Analog Input Module 4AI

The 4 channel 12bits analog input module, 4AI, has the corresponding registers, A05~A08, DREC~DREF, DRE4~DRE7. It can accept either $0 \sim 10 \mathrm{~V}$ or $0 \sim 20 \mathrm{~mA}$ signal, the range of the measured value is different which depends on the input signal mode. See the below table for more information.

content	standard		
Mode		voltage	current
Analog output range		$0 \mathrm{~V} \sim 10 \mathrm{~V}$	$0 \mathrm{~mA} \sim 20 \mathrm{~mA}$
Differentiation		10 mV	$40 \mu \mathrm{~A}$
Digital output		$0.00 \mathrm{~V} \sim 9.99 \mathrm{~V}$	$0.00 \mathrm{~mA} \sim 20.00 \mathrm{~mA}$
Register value	A05 A08	$0 \sim 999$	$0 \sim 500$
	DREC \sim DREF	$0 \sim 4095$	$0 \sim 2047$
	DRE4~DRE7		$0 \sim 2000$
Definition		$\pm 2.5 \%$	$\pm 2.5 \%$

The current value of 4AI input displaying as shown below:

$\mathrm{A} 05=01.36 \mathrm{~V}$	Press key:	$\mathrm{A} 05=05.44 \mathrm{~mA}$
$\mathrm{A} 06=02.57 \mathrm{~V}$	SEL+ \rightarrow	$\mathrm{A} 06=10.28 \mathrm{~mA}$
$\mathrm{A} 07=03.94 \mathrm{~V}$	\longleftarrow SEL $+\leftarrow$	$\mathrm{A} 07=15.76 \mathrm{~mA}$
A08=06.21V		$\mathrm{A} 08=20.00 \mathrm{~mA}$

Wiring

Temperature Input Module 4PT

The 4 channel 12bits temperature (PT100) analog input module, 4PT, has the corresponding registers with AT01~AT04.

content	standard
Temperature input range	$-100^{\circ} \mathrm{C} \sim 600^{\circ} \mathrm{C}$
Digital output	$-100.0^{\circ} \mathrm{C} \sim 600.0^{\circ} \mathrm{C}$
Differentiation	$0.1^{\circ} \mathrm{C}$
Definition	$\pm 1 \%$

The input value of SG2-4PT is over range if wiring error or no input, SG2 will not update the corresponding channel, and the corresponding Error coil (M) turns ON.

coil	AT number	
M34	AT01	SG2-4PT channel 1 error
M35	AT02	SG2-4PT channel 2 error
M36	AT03	SG2-4PT channel 3 error
M37	AT04	SG2-4PT channel 4 error

The current value of 4PT input displaying as shown below:

AT01=-0100.0 ${ }^{\circ} \mathrm{C}$	Press key:	AT01=-0148.0 ${ }^{\circ} \mathrm{F}$
AT02 $=0600.0^{\circ} \mathrm{C}$	SEL $+\rightarrow$	AT02 $=1112.0^{\circ} \mathrm{F}$
AT03 $=0193.2{ }^{\circ} \mathrm{C}$	\longleftarrow SEL $+\leftarrow$	AT03 $=0379.7^{\circ} \mathrm{F}$
AT04=-0017.1 ${ }^{\circ} \mathrm{C}$		AT04= $0001.2{ }^{\circ} \mathrm{F}$

Wiring

Analog Output Module 2AO

SG2 main unit can connect with two 2-channel, 12bits analog output module, 2AO, at the same time. The close one will be auto-assign to $A Q 01 \sim A Q 02$, and the other is distributed to $A Q 03 \sim A Q 04$. It can out $0 \sim 10 \mathrm{~V}$ voltage signal or $0 \sim 20 \mathrm{~mA}$ current signal, and the data in the 12bits data register, DRD4~DRD7, will determined the output of AO channel. See the below table for more information.

content		standard	
	Mode	voltage	current
Analog output range		$0 \mathrm{~V} \sim 10 \mathrm{~V}$ Load impedance should be bigger than 500Ω	$0 \mathrm{~mA} \sim 20 \mathrm{~mA}$ Load impedance should be smaller than 500Ω
Differentiation		10 mV	$40 \mu \mathrm{~A}$
Digital output		$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	$0.00 \mathrm{~mA} \sim 20.00 \mathrm{~mA}$
Register value	AQ01~AQ04	0~1000	0~500
	DRD4~DRD7	0~4095	0~2047
Definition		$\pm 2.5 \%$	$\pm 2.5 \%$

The output mode of AQ is set by the current value of DRD0~DRD3

	Output Register	Mode Register	Mode	DRD0~DRD3 data definition
Channel 1: AQ01	DRD4	DRD0	1	0 : voltage mode and reset value when stop;
Channel 2: AQ02	DRD5	DRD1	2	1: Current mode and reset value when stop;
Channel 3: AQ03	DRD6	DRD2	3	2: voltage mode and keep value when stop;
Channel 4: AQ04	DRD7	DRD3	4	3: Current mode and keep value when stop;

※ Analog output works in mode 1 if the value of the mode register, DRD0~DRD3, is larger than 3.

The appearance of AQ value on the HMI screen

The HMI on SG2 displays the code of selected coil when SG2 at STOP mode, and showing the current value at RUN mode, see the below figure to get more information.

When AQ mode is in current mode, the relationship among the DR, AQ output and display value is shown as below:

DRD5=2047, AQ02=500, display: 20.00 mA
※ When the preset value in "Analog Output Set" screen is a constant, this value will be stored in DR register, (DRD4~DRD7) and the AQ value equals to (DRx/4.095). For example, CH1 is configured as mode 1, set a constant value, 4000, then the value of AQ01 will be 977, and HMI displays 9.77 V .
※ Once the preset value refers to other variable, its value is also stored in DR register, (DRD4~DRD7), but it will be equal to AQx * 4.095. ($\mathrm{DRx}=\mathrm{AQx} * 4.095$).
※ More information about expansion analog input to see: Chapter 5 Relay Ladder Logic Programming -AQ (Analog output).

Wiring

Communication Module

MBUS Module

Summarize

MBUS module makes SG2 without the ability of communication control be controlled with other controller via RS 485 Modbus protocol. MBUS just can make SG2 work as slaver, responses the request of master, but it can't work as master. MBUS makes the scan time of SG2 become longer; and it depends on the content of the communication command. Normally, the extended time is less than 20 ms , but it will be 100 ms if the order is to set the preset value of function.

MBUS Cell Configuration

(1): Connecting port
(2): Power
(3): SW2, 2-bit switch (terminal resistance selection)
(4): RUN, running LED light
(5): COMM. Communication LED light
(6): Error, state LED light
(7): RS 485 port
8): SW1, 8-bit switch (set format of communication)

Connect with electrical source

Input 24VDC

(1)-1A quick-blowing fuse, circuit-breaker or circuit protector.
(2)-Surge absorber.

Communication set

The MBUS communication baud rate and format can be set by 8 switches (DIP), SW1.

Baud rate
SW1-1~SW1-3 set communication baud rate is $4.8 \mathrm{~K}, 9.6 \mathrm{~K}, 19.2 \mathrm{~K}, 38.4 \mathrm{~K}, 57.6 \mathrm{~K}$ as shown below.

SW1-1	SW1-2	SW1-3	SW1-6	Baud rate (Kbps)
OFF	OFF	OFF	OFF	4.8
ON	OFF	OFF	OFF	9.6
OFF	ON	OFF	OFF	19.2
ON	ON	OFF	OFF	38.4
$*$	$*$	ON	OFF	57.6
$*$	$*$	$*$	ON	38.4

※ * can be ON or OFF

Parity bit and stop bit
SW1-4~SW1-5, set stop bit and verifying bit
SW1-6, assembled setting
SW1-7~SW1-8, reserved
More information as shown below:

SW1-4	SW1-5	SW1-6	SW1-7	SW1-8	Stop bit, parity bit, assembled set
OFF	OFF	OFF	$*$	$*$	2 stop bits, no parity bit
OFF	ON	OFF	$*$	$*$	1 stop bit, no parity bit
ON	OFF	OFF	$*$	$*$	1 stop bit, 1 odd parity bit
ON	ON	OFF	$*$	$*$	1 stop bit, 1 even parity bit
$*$	$*$	ON	$*$	$*$	SW1-1~SW1-5 are inefficiency, communication format is default as $38.4 K b p s, ~$ stop bits, no parity bit

※ * can be ON or OFF

Address

The ID of MBUS module, whose range is from 0 H used for broadcast address to 63 H , must be the one of the ID setting of SG2 basic unit. Modify the ID number of the SG2 main unit, this new ID is effective when restart the power or it dose not receive any communication command within 0.5 s .

LED state display

Error code	State indication	Error type and reason	Manage method	remark
56H	The error LED light flick slow (2Hz)	The connection between SG2 and COMM. Mode is improper	check-up connection among SG2, IO mode and COMM. Mode	The question is connection with the mode before it if there are many expansion modes.
55H	The error LED light is ON	SG2 set error: IO number set is different from factual.	check-up SG2 set	
$\begin{aligned} & \hline 51 \mathrm{H} \\ & 54 \mathrm{H} \end{aligned}$	The error LED light flick slow (2Hz)	ModBus order error: data frames, function code, address of register, CRC, data unseemliness, verifying error, etc.	check-up the order and communication set according COMM. protocol	
59H	The error LED light flick quickly(5Hz)	COMM. data error: Verifying bit error, Length of data respond error, CRC error	Make sure the connection between SG2 and COMM. Mode is credible, describe environment interfere.	

※ More information to see R06-SG2-MBUS-D01V31(SG2-MBUS Communication User Manual).

DNET Module

Summarize

DNET makes SG2, which doesn't have the ability of DeviceNet, to work in DeviceNet network. At DeviceNet side, DNET is a GROUP 2 ONLY equipment, slave equipment in this network. At PLC side, DNET communicate with SG2 through SG2 COMM. Port, it is point-to-point communication equipment.

DNET is together with SG2 as one slave equipment in DeviceNet network.

DNET Cell Configuration

(1): 24 V DC power supply port
(2): Network state LED light NS
(3): Mode state LED light MS
(4): 5-pin DeviceNet port
(5): Button
(6): Linker
(7): Port connection with SG2
(8): SW1, 8-bit switch (set network's ID and baud rate)
(9) : SW2, 2-bit switch (network terminal resistance selection)
(10): Flexed installation feet

DNET function description

Support predefine master slave connection
Support predefine explicit message connection
Support predefine poll IO message connection
Support explicit and IO message fragment
Support duplicate MAC Id check
UCMM incapable device
No bit-strobe IO message
No change of state and cycle IO message
No device communication faulted message
No device heartbeat message
No device shutdown message

Connect with electrical source

Input 24VDC

(1)-1A quick-blowing fuse, circuit-breaker or circuit protector.
(2)-Surge absorber.

Connect with DeviceNet network

Using 5-pin network tie-in connected DNET to DeviceNet bus. Please use network tie-in and cable ordained by ODVA. The style of cable decides the maximal length of cable and baud rate of communication at more degree.

1: GND	black
2: CAN_L	blue
3: Shield	no color
4: CAN_H	white
5: 24 V	red

Address and Baud rate set

In equipment network, each slave node needs a difference MAC ID, and the maximal number of ID is 64 (0~63). The address of node can be set by SW1-1~SW1-6 of DNET oneself mode. And the baud rate of communication can be set by SW1-7 and SW1-8, the baud rate set must be the same as equipment network.

SW1_1~SW1_6: ID in network

SW1-1	SW1-2	SW1-3	SW1-4	SW1-5	SW1-6	ID
OFF	OFF	OFF	OFF	OFF	OFF	0
ON	OFF	OFF	OFF	OFF	OFF	1
OFF	ON	OFF	OFF	OFF	OFF	2
ON	ON	OFF	OFF	OFF	OFF	3
OFF	OFF	ON	OFF	OFF	OFF	4
------------	---	---	---			
OFF	ON	ON	ON	ON	ON	62
ON	ON	ON	ON	ON	ON	63

SW1_7~SW1_8: Baud rate

SW1-7	SW1-8	Baud Rate
OFF	OFF	125 K
ON	OFF	250 K
OFF	ON	500 K
ON	ON	Reserved (default baud rate: 125 K)

LED state display

DNET has two LED lights, watching itself and communication Bus' state.

1) mode state LED (MS)

Double color LED (green and red) indicates DNET state.

Module status LED	Explanation	Correct or prevent fault
Off	No power	Power up
Green on	Normal operation status	No
Green flash	No connected with SG2 basic unit	Connected with SG2 correctly.
Red flash	Connect with SG2 but communication error.	Set SG2 IO number correctly.
Red on	Device hardware error.	Use a new module.

2) network state LED (NS)

Double color LED (green and red) indicates equipment network bus state.

Net status LED	Explanation	Correct or prevent fault
Off	-No power. -The device is a single node in the net.	Power up. Add other device in the net.
Green on	Normal operation mode, and connected with master.	No
Green flash	Normal operation mode, but not connected with master or had be set free	No
Red flash	IO connection time out, waiting green flash after a few seconds.	No
Red on	-Dup MAC ID check error -Communication error and restart	Replace node address and power up again.

※ More information about protocol and EDS file to see:
R06-SG2-DNET-D01X30(SG2-DNet user manual)
R09-SG2-DNET-C02X30(04D2000C00020300).eds

PBUS Module

Summarize

PBUS makes SG2, which can't work in ProfiBus DP network, to work in ProfiBus DP network. At ProfiBus DP side, PBUS mode is a gateway, a slave node in network. At PLC side, PBUS communicate with SG2 through SG2 COMM. Port, it is point-to-point communication equipment.

PBUS is together with SG2 as one slave equipment in ProfiBus DP network.

PBUS Cell Configuration

(1): 2-bit switch (terminal resistance selection)
(2): 24 V DC power supply port
(3): Power indicate light
(4): BUS indicate light
(5): Port connection with SG2
(6): 8-bit switch (slave node ID set)
(7): 9-hole PROFIBUS DP socket

Connect with electrical source

Input 24VDC

(1)-1A quick-blowing fuse, circuit-breaker or circuit protector.
(2)-Surge absorber.

Connection with Profibus Net

Using 9-hole pin to connect with PROFIBUS DP bus, please use the regulated pin and cable.

Ports assign:

NO.	name	description
1	reserved	
2	reserved	
3	RxD/TxD-P (B- Line)	Send/receive data (positive)
4	reserved	
5	DGND (2M)	Digital GND
6	VP(2 P5)	+5V DC (supply bus expansion)
7	reserved	
8	RxD/TxD-N (A-Line)	Send/receive data (negative)
9	reserved	

Baud rate adapt oneself and address set

After PBUS mode powers up, it can identify the baud rate on Profibus automatically when at least one master sends right message. The baud rate range is: $9.6 \mathrm{Kbit} / \mathrm{s} \sim 6 \mathrm{Mbit} / \mathrm{s}$. In equipment network, each slave node has a difference ID, and the maximal number of ID is 127 ($0 \sim 126$). Its ID can be set by 8 -bit switch integration on itself.

SW-1	SW-2	SW-3	SW-4	SW-5	SW-6	SW_7	SW_8	ID
OFF	$*$	0						
ON	OFF	OFF	OFF	OFF	OFF	OFF	$*$	1
OFF	ON	OFF	OFF	OFF	OFF	OFF	$*$	2
ON	ON	OFF	OFF	OFF	OFF	OFF	$*$	3
OFF	OFF	ON	OFF	OFF	OFF	OFF	$*$	4
$----------------~$	---	---	$*$	---				
ON	----	OFF	ON	ON	ON	ON	ON	$*$
OFF	ON	ON	ON	ON	ON	ON	$*$	125

※ The SW_8 bit is reserved.

LED state display

PBUS module has two number of double color LED (green and red) used for fast diagnostics, to indicate the state of COMM. Bus and itself.

1) power LED

State of LED	Description
Green ON	natural
Yellow (red and green) flash (4Hz)	Hardware error
Yellow (red and green) flash (2Hz)	IO number error
Red flash (2Hz)	Connection with SG2 error
Red flash (1Hz)	Read/write order COMM. With Network bus error
OFF	Power down

2) BUS LED

State of LED	Description
Green ON	Connect with DP Net and communication right
OFF	Not connect with DP Net

※ More information about protocol and GSD file to see:
R09-SG2-DP-C04 X 30 (SG2-PROFIBUS-DP manual E)
TECO_SG2.GSD

EN01 (TCP/IP) Module

Summarize

EN01 makes SG2 to work in TCP/IP network, read, write and monitor program by software PC Link.

EN01 Cell Configuration

(1): 9-hole socket (PL01 connect with SG2)
(2): Flexed installation feet
(3): TCP/TP port
(4): Button
(5): Power indicate light (orange)
(6): 24 V DC power supply port

Dimensions

Unit: mm (1inch=25.4mm)

Connect with electrical source

(1)-1A quick-blowing fuse, circuit-breaker or circuit protector.
(2)-Surge absorber.

Communication (product EN01)

Verification Check: If powered up correctly, the EN01 Evaluation Board power LED indicator lights orange and remains on.

Install Device

1. Select dotnetfx.exe and Run.
2. Select XPortInstallerSetup.msi and Run.
3. Select red32bit_3.0.0.2.exe and Run.

Note: Obtain the software from supplier and after you complete the installation, please restart your Computer.

Configure

You can use Local area network or Ethernet to configure this module. In the Ethernet this module need to have the IP address that can visit. You can obtain the IP address through the Network address Translation or The manager of the Ethernet. In the Local area network, please be sure to follow the procedures given below.

1. Click Start in the Windows Taskbar \rightarrow Programs \rightarrow XPortInstaller \rightarrow XPortInstaller.
2. Click the Search icon Search and choose it.

A. Hardware Address

The format: 00-20-4A-XX-XX-XX, where the XXs are unique numbers assigned to the product.
B. IP Address

EN01 must have a unique IP address on your network. The systems administrator generally provides the IP address, subnet mask, and gateway. The IP address must be within a valid range, unique to your network, and in the same subnet as your PC. The format: 0.0.0.0 (e.g. 10.128.19.119).
3. Click the Assign IP iconAssign IP.

Note: Enter the IP address Format: 0.0.0.0, and click OK.
Waiting for about 10Sec and the window displays in your window, click OK.

4. Click the Search icon Search and choose it.

5. Click the Ping icon Ping \rightarrow Ping button. The results display in the Status area, make sure the unit is properly attached to the network and that the IP address assigned is valid for the particular network segment you are working with. Click the Close button.

6. Click the Ports. Rework the Baud Rate member, Data Bits member, Stop Bits member. But make sure these members accord with the Main type module. Write down the Local Port member: 10001. When you are finished then click OK. Click the Update Settings button to save your settings.

Note1: We recommend Baud Rate: 19200bps; Data Bits: 8; Stop Bits: 1; Parity bit: no parity.
Note2: When you click the Update Settings button to save your settings, the "status: online" will turn to "status: busy"; Waiting for about 5 Sec. the "status: busy" will turn to "status: online". After this you are configuring successful.

7. Click Start in the Windows Taskbar, \rightarrow Programs \rightarrow Lantronix \rightarrow Redirector \rightarrow Configuration. Click Com Setup button, A Port Setup dialog box displays; Click all the logical ports to which the PC will be redirected.

8. Clik Add IP button

Note: The Host member is the Automation obtain IP to your unit (e.g. 10.128.19.119);
The TCP Port member is the Local Port member: 10001.
9. Click Port Setting button; Choose the Raw Mode option and click OK

10. To hide the pop-up window, check Silent Mode on the Com Port Redirector Configuration window.

11. Click Save button and Close button.

Note: After completing this Configure, you can Link and control your product.
Choose the Com port and click Link button.

GSM Module

Summarize

With a GSM module, SG2(V3.2 and above vision)/TP03 can be monitored and controlled by sending and receiving short massage. Module support dual band EGSM900MHz/DCS1800MHz, those frequency channel support all the world except North America.

GSM Cell Configuration

(1): Flexed installation feet
(2): 24 V DC power supply port
(3): Mode state LED light MS
(4): Network state LED light NS
(5): Button
(6): SIM card port
(7): 9-hole socket (PL01 connect with SG2)
(8): Antenna (SMA port)
(9):Sucked type antenna (SMA port)

Connect with electrical source

Input 24VDC

(1)-1A quick-blowing fuse, circuit-breaker or circuit protector.
(2)-Surge absorber.

Insert SIM card

Step 1: uncover the tag paper;
Step 2: insert SIM card, as the picture above show;
Step 3: recover the tag paper;

Warning :Before inserting and removing SIM card, must cut off the power of GSM module.

Installation of antenna

U_{2}

* Sucked type antenna can attracts to any metal form.

Connect to SG2 with the PL01 cable

Connect to TP03 with the TP03-302PC cable

LED state display

GSM module has two number of double color LED used for fast diagnostics, to indicate the state.
MS: Module State LED

State of LED	Description
ON when the moment power on, then OFF	Power on program initialization
ON	Link to PLC normally
Flash $(2 \mathrm{~Hz})$	Fail to link to PLC
Flash $(1 \mathrm{~Hz})$	System configuration mode
Flash $(5 \mathrm{~Hz})$	Hardware error
OFF	No power

NS: Net State LED

State of LED	Description
Flash $(5 \mathrm{~Hz})$	Search net signal (about 20s)
Flash $(0.5 \mathrm{~Hz})$	GSM net ready, signal weak
Flash $(1 \mathrm{~Hz})$	GSM net ready, signal strength
ON	Network error
OFF	No power or module error

※ More information to see "SG2-GSM Module User Manual".

Appendix: Keypad Programming

Appendix A: Keypad programming in Ladder mode247Appendix B: Keypad programming in Ladder FUNCTION BLOCK. 251

Appendix A: Keypad programming in Ladder mode

Operation Sample:

Procedure 1:	- 1	2-3	4-5	6-7•8	Column
Press 'OK'	Line 1				
Enter LADDER Edition	$\begin{aligned} & 2 \\ & 3 \\ & 4 \end{aligned}$				

Procedure 7 :	-1	2:3	-4-5	-6:7:8	Column	
Press ' \leftarrow ' 2 times	Line 1					

(Press 'SEL' + ' $\leftarrow \rightarrow$ '
to move the cursor to the position Required revision.

Repeat the step1~7, and input M01, I03 Instruction to column 3, 5.
Procedure 8 :
Press 'OK' in Column 5
(move the cursor to the character in column 8)

																	Column							

Procedure 12 :
 Press ' \rightarrow ' 3 times

(move the cursor to column 2)
Note: never press 'SEL' before hand

Repeat the step 1~7 and key in 'r0 3', ' - ' at Line 2 and column 3~6.

Procedure 16:

Press 'SEL'
(When the cursor located in digital or character, press 'SEL', 'Q01' will emerges)

Auto Add"("

Procedure 17:
Press ‘ \uparrow ’ for 5 times
(Press ‘SEL’ $+\uparrow \downarrow$ ’
(The character Q the cursor locating will change to C .)

Procedure 18:
Press ' \rightarrow '2 times

Line | 1 | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | | | | | | | | | |
| 2 | | | | | | | | | |
| 3 | | | | | | | | | |
| 4 | | | | | | | | | |

Procedure 19:

Press ‘ \uparrow ' for 6 times

Procedure 20:
Press 'OK'
(Auto shift to FUNCTION BLOCK and the counter input parameter)

Delete the Program Element

Display the present Line the cursor locating and operation state of SG2.

Procedure:

Press 'SEL+ESC' (simultaneously)
(The Line 4 displays where the cursor locating and operation state of SG2)

Delete the whole Line

Procedure:
Press 'SEL+DEL' (Simultaneously)

| ('ESC' Cancel, 'OK' Execute) | 4 E S C ? O K ? | |
| :--- | :--- | :--- | :--- | :--- |

Insert a whole line.

Step:
Press"SEL+OK" (at the same time)

Turn page (move upward/ downward 4 lines program):

Appendix B: Keypad programming in Ladder FUNCTION BLOCK

If you want to edit T02
Press 'SEL $+\uparrow$ '(simultaneously)

	$4 \mathrm{~N} \mathrm{0} \mathrm{1} \mathrm{\perp}$	

Step 2: modify (1)present target value (2)preset the action relay
Preset the target value

Procedure 2-3: Press ' \uparrow ' for 3 times (Press 'SEL' and followed by ‘ \uparrow, \downarrow ’ The digital ' 0 ' is changed to ' 3 ')	1 .2 .3 .4 .5 $.6 \cdot 7 \cdot 8$ Column									Column			
	Line 1												

Repeat Step 2-2 ~ step 2-4 for 3 times, to enter the following screen:

As the present value of the timer, counter, analog input (A01-A08) and analog gain value (V01-V08) is set as the preset value of them. Next to the step 2-2, to execute the following operation:

Step2-3A:
Press 'SEL'

Repeat the step 2-3A, following screen will be shown in turn:

Step 2-3H:	$\cdot 1$	$\cdot 2 \cdot 3$	- 4			column			
Press 'SEL'	line 1	$1-\int_{\perp}^{1} \mathrm{~A}$	1						

Step 2-3I:
Press 'SEL
Press 'SEL'

	4	\perp	\lrcorner

Next to step 2-3B, the following screen will be shown.

Repeat step2-4B (press ' \downarrow ' is also available), the preset value of A01-A08 will be periodically changed. And so on. 'Analog*gain + offset' value (V01-V08) and the other function blocks (time, counter...) present value is set as preset value, to repeat the step to select T01-T1F, C01-C1F, V01-V08.

| | $4\lfloor\perp$ |
| :--- | :---: | :---: |

Procedure 2-10: Press 'OK' (save the input data)	Line 1	$\begin{array}{lll}2.3 & .4: 5 & 6: 7: 8 \\ \end{array}$									Column				
		2 -	1 3	3	3	S				T					

Procedure 2-16A:
Press 'SEL'
(Begin to modify)

Repeat the step 2-16A, the following screen will be shown in turn:

Next to step 2-16A, then ' \uparrow ', the following screen will be shown.

Procedure 2-17:
Press ' \uparrow ' for 5 times
(Press 'SEL'+ ‘个/ \downarrow
to change I to M)

Procedure 2-20:
Press 'OK'
(save the input data)

| | $4 \mathrm{M} \mathrm{0} \mathrm{4} \mathrm{\perp}$ | 」 |
| :--- | :--- | :--- | :--- | :--- |

The detail operation of modify the analog comparator Ax, Ay :

Step 2-25:

Press ' \rightarrow ', press ' \uparrow '
(Select T01~T1F, C01~C1F, A01~A08, V01~V08...)

Continue to input Function Block

Method1: Next Function Block

Press 'SEL $+\uparrow$ ' (Simultaneously)

Last Function Block

Method 2: Next Function Block

Press 'SEL'

	1	2:3	4		6.7		Column
$\text { Line } 1$		$-{ }_{-}^{4}$		3	c ${ }^{\text {J }}$		

\qquad
Press ' \downarrow 'or ‘ \uparrow ' 1 times

-	1		2-3			4 -	5				7 .	8	Column	
v11	M		$\left[_{+}^{4}\right.$	4		3	3	S	e	c	${ }_{j}^{7}$	T		

	Column Press ' \rightarrow ' 1times															

Clear Function Block

Press 'SEL+DEL' (Simultaneously)

('ESC': Cancel ;
'OK': Execute)

Back to Main Menu:

Change Function Block Category:

\square

Method 1: Move the cursor to change to T, C, R, G, H, L, P, S, AS, MD, PI, MX, AR, MU

\square

Step8:

Press 'SEL'

Step 9:
Press 'SEL'

Step 13-A:

Press 'SEL'

Step 13-B:
Press 'SEL $+\rightarrow$ '

\square

Method 2:

Press ${ }^{\wedge} \uparrow$ '
Step5:

Step6:		Column
Step 7:		Column

Press ' \uparrow,

Jump from T01 to T09

Step 15:

Press ' \rightarrow '

Press ' \uparrow,

	: 1	$: 2: 3$:4:5	$: 6: 7: 8$	Column
Line		$-^{4}$		7	

