Z15 Series

03: Long Push Plunger

Part Number Description

 ① Description
 G: Standard
 H: High Sensitive (Only 060, 08)

 ② Head Type
 01: Push Plunger
 010: Pin Push Plunger
 10: Short Push Plunger

 030: Puller Plunger
 031: Cress Puller Plunger
 05: Ligar

 030 : Roller Plunger
 031 : Cross Roller Plunger
 05 : Lever
 052 : Roller Lever

 063 : Hinge Short Lever
 062 : Hinge Short Lever
 061 : Hinge Long Lever
 06 : Hinge Long Lever

 $060: Hinge\ Long\ Lever\ (\ Only\ H\) \\ 08: Hinge\ Long\ Lever\ (\ Only\ H\) \\ 09: Hinge\ Roller\ Short\ Lever$

07 : Hinge Roller Long Lever 73 : Hinge Roller Long Lever (Plastic Roller)

General Specification

Contact Form	1C	
Contact Material	Ag alloy	
Contact & Contact Distance	Z15G: 0.5mm	Z15H: 0.25mm
Insulation Resistance	100MΩ min.(at 500VDC)	
Contact Resistance	Max. 50mΩ	

Maximum Inrush Current Norminal Open (N/O) 15A Norminal Close (N/C) 30A

			Non-Inductive		Inductive					
			Lamp	Load		Motor Load				
	Voltage	Resistance Load	Norminal Open (N/O)	Norminal Close (N/C)	Inductive Load	Norminal Open (N/O)	Norminal Close (N/C)			
	125VAC	15A	1.5A	3A	15A	2.5A	5A			
	250VAC	15A	1.25A	2.5A	15A	1.5A	3A			
Contact Ratings	500VAC	10A	0.75A	1.5A	6A	0.75A	1.5A			
Ratings	8VDC	15A	1.5A	3A	15A	2.5A	5A			
	14VDC	15A	1.5A	3A	10A	2.5A	5A			
	30VDC	6(2)A	1.5A	3A	5(1)A	2.5(1)A	5(1)A			
	125VDC	0.5A	0.5A	0.5A	0.05A	0.05A	0.05A			
	250VDC	0.25A	0.25A	0.25A	0.03A	0.03A	0.03A			

The values in the blanks are ratings of Z15H type switch. The Z15H type switch has AC ratings of 125 V and 250 V.

The aforementioned values are steady-state current values.

The inductive load has a power factor of 0.4 or more (AC), and a time constant of 7m/s or less (DC).

The inrush current is ten times larger than steady-state current in the lamp load, and six times, in the motor load.

Operating Speed		0.01mm/sec ~ 0.5m/sec
Dielectric Strength		2000VAC 1 Minute
Life Cycle Electrical Mechanical		Min. 500,000
		Min. 20,000,000
Vibration Resis	stance	10Hz ~ 55Hz Durable amplitude 1.5mm
Shock	Malfunctional	Max. 30G
Resistance	Destruction	Max. 100G
Ambient Temp	erature	-25°C ~ +80°C(with no icing)
Ambient Humidity		35% ~ 85% RH
Tightening Tor	que	1.2N·m (12.24kgf·cm)

This is the case for the push-button type (The values are for the actuator for the lever type).

In the types other than the push-button type, the mechanical life is 10 million times, and the operating error is 1 ms or less.

 Rev. 2/14
 www.kacon.co.kr
 Industrial Controls Catalog
 III - 53

Product Selection

	Part Number	Head Type	OF	RF	PT	ОТ	ME	MD	FD	OP	KS
MON LINES	Z15G - 01B	Push Plunger	250 ~ 350gf (2.45 ~ 3.43N)	114gf (1.12N)	0.4 mm	0.13 mm		0.05 mm		15.9 ± 0.4 mm	Z4G1P01B
	Z15G - 010B	Pin Push Plunger	250 ~ 350gf (2.45 ~ 3.43N)	114gf (1.12N)	0.4 mm	0.16 mm		0.05 mm		28.2 ± 0.5 mm	Z4G1P03B
No. Con Manha	Z15G - 10B	Short Push Plunger	250 ~ 350gf (2.45 ~ 3.43N)	114gf (1.12N)	0.4 mm	0.16 mm		0.05 mm		21.5 ± 0.5 mm	Z4G1P09B
Acon rose	Z15G - 03B	Long Push Plunger	250 ~ 350gf (2.45 ~ 3.43N)	114gf (1.12N)	0.4 mm	5.5 mm		0.05 mm		21.8 ± 0.8 mm	Z4G1P05B
	Z15G - 030B	Roller Plunger	250 ~ 350gf (2.45 ~ 3.43N)	114gf (1.12N)	0.4 mm	3.58 mm		0.05 mm		33.4 ± 1.2 mm	Z4G1P07B
	Z15G - 031B	Cross Roller Plunger	250 ~ 350gf (2.45 ~ 3.43N)	114gf (1.12N)	0.4 mm	3.58 mm		0.05 mm		33.4 ± 1.2 mm	

Industrial Controls Catalog

III - 54

Z15 Series

Rev. 2/14

Data subject may change without notice.

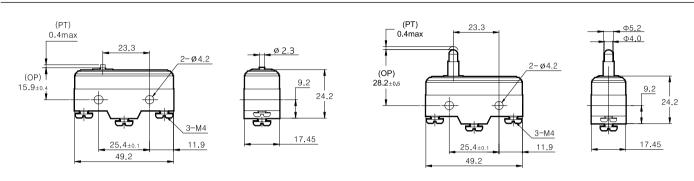
Product Selection

	Part Number	Head Type	OF	RF	РТ	ОТ	ME	MD	FD	OP	KS
Mond took	Z15G - 05B	Lever	141 gf (1.38N)	14gf (0.14N)		1.6 mm		1.3 mm	20.6 mm	17.4 ± 0.8 mm	Z4G1R01B
	Z15G - 052B	Roller Lever	141 gf (1.38N)	14gf (0.14N)		1.6 mm		1.3 mm	31.8 mm	28.6 ± 0.8 mm	Z4G1R03B
Acad Samuel	Z15G - 063B	Hinge Short Lever	160 gf (1.57N)	28gf (0.27N)		2.0 mm		1.0 mm	24.8 mm	19.0 ± 0.8 mm	Z4G1R05B
	Z15G - 062B	Hinge Short Lever	95 gf (0.95N)	18gf (0.18N)		4.2 mm		0.95 mm	26.2 mm	19.0 ± 0.8 mm	
	Z15G - 061B	Hinge Long Lever	80gf (0.78N)	15.5gf (0.15N)		4.8 mm		1.12 mm	27.2 mm	19.0 ± 0.8 mm	
	Z15G - 06B	Hinge Long Lever	70gf (0.69N)	14gf (0.14N)		5.6 mm		1.27 mm	28.2 mm	19.0 ± 0.8 mm	Z4G1L01B

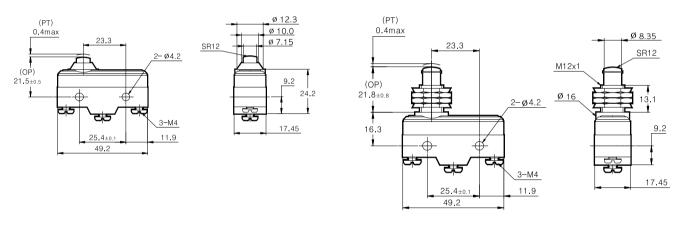
www.kacon.co.kr

Industrial Controls Catalog

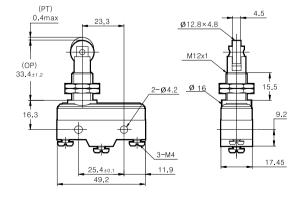
III - 55

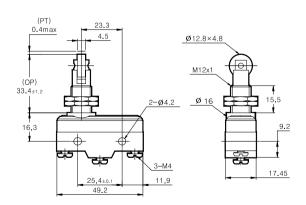

Product Selection

Part Number	Head Type	OF	RF	PT	ОТ	ME	MD	FD	OP	KS
Z15H - 060B	Hinge Long Lever	6gf (58.8 mN)	0.5gf (4.90N)	19.8 mm	10.0 mm		2.0 mm		19.8 ± 1.6 mm	
Z15H - 08B	Hinge Long Lever	4gf (39.2N)	0.3gf (2.94N)	10.0 mm	6.0 mm		3.0 mm		20.0 ± 1.0 mm	Z4G1P05B
Z15G - 09B	Hinge Roller Short Lever	160gf (1.57N)	42g (0.41N)		2.4 mm		0.5 mm	32.5 mm	30.2 ± 0.4 mm	Z4G1L07B
Z15G - 07B	Hinge Roller Long Lever	100 gf (0.98N)	22gf (0.22N)	4.0 mm	1.02 mm			36.5 mm	30.2 ± 0.8 mm	Z4G1L03B
Z15G - 073B	Hinge Roller Long Lever (Plastic Roller)	100 gf (0.98N)	21gf (0.21N)	4.0 mm	1.6 mm			47.5 mm	41.2 ± 0.8 mm	


Z15 Series

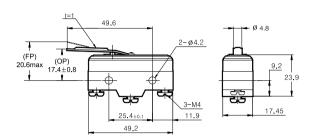
Dimension unit: mm


Z15G - 01B Z15G - 010B



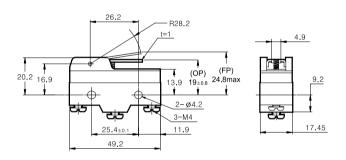
Z15G - 10B Z15G - 03B

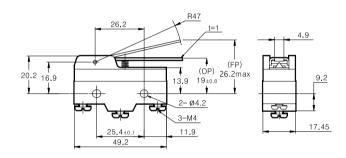
Z15G - 030B Z15G - 031B

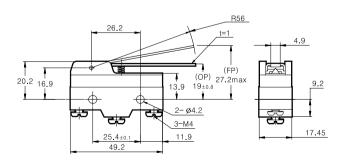


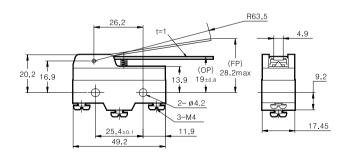
Rev. 2/14
Data subject may change without notice.

www.kacon.co.kr Industrial Controls Catalog III - 57

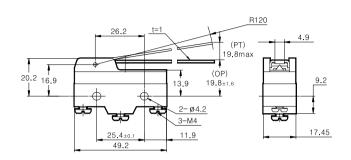

Dimension unit: mm

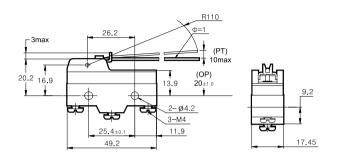

Z15G - 05B Z15G - 052B



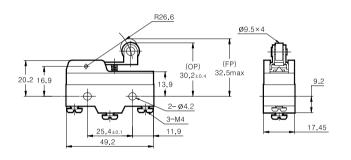

Z15G - 063B Z15G - 062B

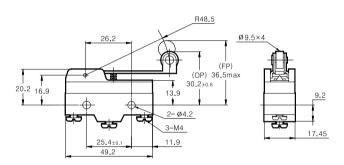
Z15G - 061B Z15G - 06B

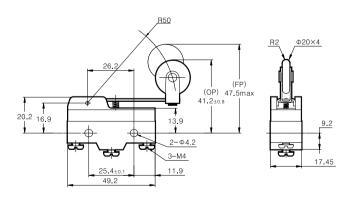




Z15 Series

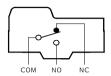

Dimension unit: mm


Z15H - 060B Z15H - 08B

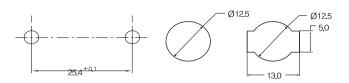


Z15G - 09B Z15G - 07B

Z15G-073B



Rev. 2/14 www.kacon.co.kr Industrial Controls Catalog III - 59



Dimension unit: mm

Diagram **Panel Cut Out**

COM : Common Terminal NO : Norminal Open Terminal NC : Norminal Close Terminal

KACOM

Z15 Series

Glossary

Operating characteristics	Category	Abbr.	Term	Unit	Definition
		Force required for operation	OF	g, kg g-mm	Force on the actuator required for the motion from the free position to the operating position
	Force	Restoring force	RF	g, kg g-mm	Force on the actuator required for the motion from the operating limit position to the restoring position
OF RT		Force required for entire motion	TF	g, kg g-mm	Force on the actuator required for the motion from the operating position to the operating limit position
or TF MD		Motion to the operating position	PT	mm, deg	Distance or angle from the free position of the actuator to the operating position
TIP RP	Motion	Motion after operation	ОТ	mm, deg	Distance or angle from the operating position of the actuator to the operating limit position
		Hysteresis distance	MD	mm, deg	Distance or angle from the operating position of the actuator to the restoring position
Center of the switch mounting hole		Total motion	TT	mm, deg	Distance or angle from the free position of the actuator to the operating limit position
PT OP REMODE		Free position	FP	mm, deg	The position of the operating part when no force is applied from outside
		Operating position	OP	mm, deg	The position of the actuator when the external force is applied to the actuator and the moving contact reverses from the free position
•	Position	Restoring position	RP	mm, deg	The position of the actuator when the external force to the actuator is reduced and the moving contact reverses from the operating position to the free position
		Operating limit position	TTP	mm, deg	The position of the actuator when the actuator reaches the actuator stop position

Option (mm)

SAFETY COVER

75C1

53.5

4.3°

25.4

20.0


8.5

8.0

21.0 8.0

21.0 8.0

ZSC2

Rev. 2/14
Data subject may change without notice.

www.kacon.co.kr Industrial Controls Catalog III - 61

Electrical Caution

Electrical conditions

Check the rating because the contact has different breaking capacities for AC and DC.

For microvoltage and microcurrent, use the contact for microload.

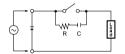
Check the inrush current, steady-state current and inrush time.

Measure the contact resistance at DC 6 V ~ DC 8 V and 1A

(Comply with the voltage drop method for the microcurrent).

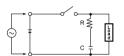
The difference between the steady-state current and inrush current may vary according to the load type. Check the inrush current value.

• The ratings are based on the following conditions.

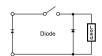

Inductive load: power factor 0.4 or more (AC), time constant 7 ms or less (DC)

Lamp load: Inrush current≥10× Steady-state current

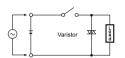
Motor load: Inrush current≥6× Steady-state current


Notes for the circuit

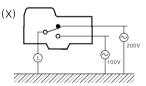
In the inductive load breaking circuit, the surge and inrush current at the opening/closing of the circuit may cause contact problems. Therefore, it is desirable to insert a protection circuit as follows.



Normally used for DC circuits. A resistor of several ohms is required. When used for AC circuit, the load must be small


R: 10 **Ω** ~ 100 **Ω** C: 0.05 ~ 0.1 uF

Used both for AC and DC circuits. R: 10 Ω C: 0.1 ~ 0.2 uF


Used only for DC circuits. Select a diode with sufficient margin to the inverse withstand voltage.

Used both for AC and DC circuits. Select a varistor that is 1.5 times higher than the power supply voltage.

Do not connect different polarities and types of power to one switch contact.

Do not apply the voltage between contacts (This causes the mixed contact and contact weld)

Application to the electronic circuits (low voltage and current)

1.The micro switch generates bouncing and chattering between contacts when it is switched on/off. This causes troubles, including noises and wrong pulses, to the electronic circuits or acoustic devices.

2. When bouncing and chattering cause problems, studies are required to provide an absorption circuit in addition to the CR circuit.

3.In the areas that require high contact reliability, the Ag contacts, which have been widely used, are hardly used. Au contacts have high performances for microvoltage and microcurrent.

Mechanical Caution

Mechanical conditions

Select the actuator according to the operating method.

Do not apply excessive force to the actuator.

Check the switching speed and frequency.

1) If the switching speed is too slow and unstable, poor contact or contact weld may occur.

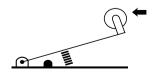
2) If the switching speed is too high, switching may not be completed.

Precautions

The operating method, cam or dog type, frequency, motion after switching significantly influence the prodvvuct life and accuracy. Use the cams or dogs that have general shapes.

Do not allow the load to one side of the switch actuator, and prevent the partial wear.

Adjust the actuator so that it does not pass beyond OT.


The proper operating stroke is 70% ~ 100 % of the standard OT.

If OT passes beyond the limit, it may cause failure.

Use the switch considering the characteristics of the actuator.

In the case of the roller arm lever, do not apply force in the arrowed direction in the figure.

Avoid the modification of the operating position by processing the actuator.

Rev. 2/14

Industrial Controls Catalog

www.kacon.co.kr

Data subject may change without notice.

III - 62

Z15 Series

Mounting Caution

Environment

If the switch is not waterproof and sealed, do not use the product in the environment where oil or water scatters or bursts.

Use the protective cover to avoid direct exposure to the liquid. A limit switch is more proper for this case than the standard switch.

Contact us when using the limit switch outside or with special cutting oil so that the deterioration of the switch material is expected.

Place the switch on the place where it is not directly exposed to the processing waste or dusts.

Protect the actuator and switch body from the cutting waste or foreign matters.

Do not use the switch in the temperature and air conditions other than specified.

The allowable ambient temperature varies according to the product type (Check the product specifications).

In the case of abrupt thermal change, the heat impact deforms the switch and causes failure.

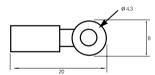
When mounting the switch in the place where operating errors or accidents may happen in the normal operator or equipment conditions, additional measures are required.

The panel mounting type

Use M4 screws for fixing. Mount the product firmly using flat or spring washers.

The proper tightening torque is $12 \sim 15 \text{ kgf} \cdot \text{cm} (1.18 \sim 1.47 \text{ N} \cdot \text{m})$.

The proper tightening torque for the hexagonal nut of the actuator is 50 kgf·cm (4.9 N·m).


When mounting the panel mounting pushbutton type on the side using screws, remove the hexagonal nuts from the actuator part.

For the connection with lead terminals, use crimp terminals at a tightening torque of 8 ~ 12 kgf·cm

(0.78 ~ 1.18 N·m). (Recommended wire spec.: VCT 1.25 mm² twowire, three-wire)

The drip-proof type

Do not soak the product in oil because this product is not completely oil-tight. Avoid using this product in the condition where temperature abruptly changes.

Specifications and materials can change without prior notice.

III - 63 www.kacon.co.kr **Industrial Controls Catalog** Data subject may change without notice.

